
Whitepaper: Service Oriented Architecture Strategies 1/5
Rowan Mountford & Dr Ant Kutschera
© 2008

White Paper: Service Oriented Architecture Strategies
By Rowan Mountford and Dr Ant Kutschera
July 2008

Over the past 5 years the phrase “Service Oriented Architecture” (SOA) has become a
term commonly used throughout IT departments in the Enterprise. There are many
definitions1, but the underlying idea is nothing new – hiding implementation details (the
“how”) and providing interoperable interfaces which any part of the Business or indeed
any Business Partners can plug into, to use the services “on demand”. A service typically
represents a particular business process within the company, or may indeed be an
orchestration of a number of business processes put together. A related technology,
namely Web Services, has played a big part in providing the implementation of such
services since they too offer interoperability and abstraction away from technology
specifics.

Companies traditionally providing a “service” to their customers (consulting, operations
in terms of data centres, etc) have jumped on the band wagon and tried to cash in on
the hype surrounding SOA by turning into “service providers”, even providing “web
services” albeit in a non-technical sense of the phrase.

So SOA has become important to modern IT and understanding it and the options
surrounding it is important to anyone working with IT today. This paper discusses various
strategies related to the implementation of SOA.

The Various Options
Typically the starting point for an SOA will be a “green field” project, meaning that there
is a budget for a brand new project and its architecture will need to be defined.
Alternatively, budgets might be made available to upgrade existing systems (hopefully
already 3 or more tier) in order to enhance their functionality, increase their
maintainability and reduce future costs of keeping these systems running. Other reasons
for going down the SOA route are that a business may want to restructure its IT in order
to allow sharing of common functions throughout the business.

In the worst case, projects have taken an existing middle tier and wrapped it up in web
services. A more ideal situation is for the IT department of an enterprise company to put
an architecture board in place who will analyse the various overlapping functions of their
business and its partners. This board will then define a set of core services used by two
or more departments. The strategy of how to then implement a cost effective SOA is
then their next topic, and is indeed the focus of discussion for this paper.

By the experience of the authors, two typical scenarios unfold. The first is for a central IT
department to implement the services named by the board, probably based on a central
framework2. Each business unit can help to specify the interfaces of the services that
they will use, giving them a chance to define what they need out of the service. Now
comes the question of whether the business is allowed to dictate this service in terms of
how each business unit needs it to be implemented, or whether the central IT board
dictates a generalisation of the service such that the business needs to adjust. Both
these scenarios will be discussed below.

1 Just search on http://www.google.com
2 The subject of a further white paper, coming this way soon

http://www.google.com

Whitepaper: Service Oriented Architecture Strategies 2/5
Rowan Mountford & Dr Ant Kutschera
© 2008

The second scenario is where the business unit providing a “physical” service (say,
accounting) to other business units becomes the owner of its own IT services and gets
the budget to implement these services and offer them to other parts of the business or
indeed business partners. Again, the interfaces of these services can be dictated by the
business unit, or more centrally by an IT board with an overview of the service
landscape.

The above is rather wishy-washy and high level. In order to bring it back down to the
real world, where both authors prefer to work in their day to day lives, consider the
following example. An insurance company, Cowboysure, protects its customers against
fraudulent IT service providers, who cannot deliver IT projects on time, to budget, nor
with the required quality. They have a sales department who have the following service
offerings:

1) Get brochure
2) Get Offer
3) Purchase Offer

There is also the accounting department who have these service offerings:

1) Submit monthly accounts
2) Get Sales Report

These services are fairly broad and high level. But now comes the question of how
Cowboysure should go about turning their service requirements into a reality. Based on
the above discussion of strategies, we now have four possible ways to define and realise
these services, namely:

A) Define the interface centrally (central IT architecture board) and implement it
centrally too (central IT department),

B) Define the interface locally (by the business unit) but implement the service
centrally (by the central IT department),

C) Define the interface centrally (central IT architecture board) but implement the
service locally (by the business unit),

D) Define the interface locally (by the business unit) and implement it locally too
(business unit).

In tabular form, these options would look like this:

Interface Definition

Central Local

Central A B
Implementation

Local C D

This paper will now continue with an analysis of each strategy. It will finish with a
recommendation, and discussion of a cost effective solution.

Centrally owned Interfaces versus Locally owned Interfaces
Interfaces that are controlled centrally by an architecture board have the advantage that
the board has a good overview of the SOA landscape and all its offerings. As the SOA
offerings are increased and the landscape grows and changes, so the board can ensure
services are kept up to date, increasing their usefulness to the business thus
maintaining/improving their return on investment.

Whitepaper: Service Oriented Architecture Strategies 3/5
Rowan Mountford & Dr Ant Kutschera
© 2008

One problem that centrally owned interfaces have is that they may get generalised in
order to suit all parts of the business. This may not suit the business unit who sits behind
the interface as it may not model their business process accurately. The result will be
that the business unit needs to reengineer its physical processes to match those
modelled in the IT world. Typically customers who buy into large costly applications
might be willing to do this as such applications may be based on best practises. However
there will always be times when a business chooses not to fit in and to invest in making
their business processes more specific to their needs. In such cases, a centrally managed
interface would need to be split and the resulting services would contain the
specialisations that are required. Remember however that IT is already expensive
enough, and just because a service can be made more complicated does not mean it
simply should be. Part of the analysis should involve considering the costs of a more
complex service, not only in terms of development, but also maintenance.

Locally owned interfaces have the advantage that they will really fit the business unit
well, however at the expense of the bigger picture which a central architecture board
should have of the landscape. There is then the danger that similar services might be
implemented by several business units, resulting in increased costs (implementation as
well as maintenance – consider the danger that half of the business might use one
service while the other half uses a second service).

Another danger of locally managed interfaces is that you can end up with each business
unit calling other services in the landscape as and when they like. Without the central
overview of the landscape and the associated planning, you can end up with a “point to
point” architecture as illustrated below. To reduce communication paths, complexity and
related costs, it is better to have a central body in charge of the interfaces, analogous to
a service bus along which service calls can be conducted (see below). For these very
reasons, Enterprise Service Bus (ESB) architectures have emerged in recent years.

Figure 1: Diagram showing an example of a point to point architecture. Potentially, the
number of lines of communications can be 2)1(nn .

Whitepaper: Service Oriented Architecture Strategies 4/5
Rowan Mountford & Dr Ant Kutschera
© 2008

Figure 2: Diagram showing service bus, used to reduce line of communication down to n.

Central Implementation versus Local Implementation
If services are implemented centrally, by a central IT department within an enterprise
organisation, it is likely that they will all be based upon a single framework and the same
implementation standards. But that does not necessarily mean that they will be more
maintainable or implemented more efficiently. Those same frameworks and standards
could just as well be passed on to business units who have their own IT departments, so
that they can do the implementation themselves.

In fact the very nature of interface definition and implicitly, design by contract3, is that
once an interface is designed, the implementation that goes behind it becomes irrelevant,
so long as the service delivers what is specified in the contract. So where the
implementation is done – within the same department, within business units of the same
company, or indeed by an outside company on the other side of the planet – no longer
matters. It is only a question of whether or not the business who implements the
services wants to structure their IT department so that it is a cost centre servicing all of
the business centrally.

What however does happen, when implementations are managed locally, is that those
implementations become decoupled. This might sound strange, but often when a single
department develops everything, they start to share code and build in dependencies
which do not belong. At the very most, centrally developed services belonging to
different business units should never be more coupled than by the use of a handful of
shared libraries. Those shared libraries need to be managed with their own release
schedules and be completely independent of the services they support. Look to open
source libraries4 for good examples of how libraries should be developed and maintained.

The next problem that can easily occur when services are developed centrally is that
services start being abused. Services which were originally designed to be an internal
part of a decoupled service can be called by new services, even though that was never
the intention. This happens equally with composite services (facades, higher level
services) as well as atomic services (lower level, called by higher lever services). Once
this starts to occur, the services are no longer decoupled and dependencies start making
maintenance expensive. The author of such an internal service might make a change
which then breaks the new service calling it. Since it was an internal service, there was
never really any contract in place specifying exactly how it should work under all
circumstances and as such the internal service has been abused. Modern service
frameworks5 have the notion of making such internal services “protected” such that they
can control their visibility to other services. However decoupling the implementations, by
allowing separate business units to develop them implicitly forces internal services to
stay that way (internal).

Recommendations
In terms of service interfaces, based on the discussion above, it is recommended that a
central architecture board be put in place to handle the creation and maintenance of
service interfaces. In cases where the business decides that a business unit should not
generalise its services, the business may specify more complex service interfaces.
However it should be extremely well documented which interface is to be used under
which circumstances. Before the decision to specialise interfaces is made, an analysis

3 http://en.wikipedia.org/wiki/Design_by_contract
4 See http://commons.apache.org/ for examples
5 For example, see Service Permissions under http://www.eclipse.org/equinox/

http://en.wikipedia.org/wiki/Design_by_contract
http://commons.apache.org/
http://www.eclipse.org/equinox/

Whitepaper: Service Oriented Architecture Strategies 5/5
Rowan Mountford & Dr Ant Kutschera
© 2008

which includes development and maintenance costs of the specialisation should be
conducted.

In terms of service implementations, based on the discussion above, it is recommended
that services be independently developed for each business unit. Whether the
implementation occurs within a central IT department or within local IT departments
within the business, is irrelevant. It is far more important is to ensure that packages of
services have public entry points and that their internal implementations remain hidden.
These service packages should remain decoupled. The implementation should be based
on the same frameworks and standards which the company should set in place centrally.

Moving Forward
At some point, it will become time to get a Return on the Investment (ROI) made in
defining interfaces, namely to implement those services, get the business and its
partners to start using them and see success in terms of a more efficient business and a
reduction in the Total Cost of Ownership (TCO).

The authors have seen such implementations fail on many occasions. The following is a
list of steps to follow, in order to forego failure.

1) Rapid Prototyping Create prototypes which can be extended into fully working
products. The prototype will prove that the service will work. If it is prototyped as
a cut down version of a fully scoped service, it will then be fairly easy to extend
that prototype into a fully working product, helping to reduce costs.

2) Technology Stack Use an existing and well understood technology stack which
has many users and as such is tried and tested. Shy away from developing your
own frameworks as they will simply add required effort to the project. Hardly ever
does the case exist where the wheel has not already been invented, somewhere
on the internet.

3) Short Release Cycles Release and test frequently. Not only does this reduce
maintenance costs because bug fixing is cheaper the earlier it is done in the
software lifecycle, but it also ensures the customer gets what they require, even if
their original requirements were wrong and need to be re-specified.

4) Business Ownership Ensure the business is involved regularly and that they
really want what is being supplied. If there is no business stakeholder willing to
take responsibility for receiving the delivery, then it is probably not worth
implementing the software.

This paper does not consider the technology required to move forward and that topic is
out of scope for this paper. However, the authors intend to produce a further white paper
with details on how to successfully move into this next stage of service implementation.
Watch this space!

About the Authors
Rowan Mountford works as an enterprise architect for Logica UK and has interest in SOA
Strategies from his day to day work.

Dr Ant Kutschera has nearly 10 years experience of implementing software in the
enterprise, in all aspects of the software life cycle, including but not limited to
requirements gathering, architecture, design, programming, testing, delivery, support
and maintenance. He currently works for various clients as an independent consultant,
specialising in software architecture, Java EE, Rich Clients and SOA. His interests also lie
in ESB / EAI. He can be contacted through whitepapers@maxant.co.uk.

mailto:whitepapers@maxant.co.uk.

