
White Paper: Agile Software Development of SOA, BPM & ESB 1/23
Dr Ant Kutschera & Rowan Mountford
© 2008

White Paper: Agile Software Development of Service
Oriented Architectures, Business Process Models and
Enterprise Service Buses
By Dr Ant Kutschera and Rowan Mountford
September 2008

A modern IT environment in the enterprise makes use of many systems, such as an
Enterprise Service Bus (ESB), Business Process Modelling (BPM) Engine and a Java
Enterprise Edition (Java EE) Application Server (AS). These systems would typically
connect with anything like an Email Server, FTP Server, File Server, LDAP Server,
Databases or other systems such as SAP or legacy systems. Inside the systems,
technologies like Service Oriented Architecture (SOA), Enterprise Java Beans (EJB), Web
Services (WS), Object Relational Mapping (ORM), Model View Controller (MVC), Inversion
of Control (IoC) and Dependency Injection (DI), and many others are common place.

Agile software development is the process by which a system is produced quickly and
efficiently by means of frequent and complete releases allowing the stakeholders in the
project to get their hands on the system in order to test and review it. A prototype or
proof of concept can be developed into a useful productive system by means of an
iterative and incremental process whereby feedback is given by the stakeholders, based
upon the rapid successive releases of the software.

However, agile development of applications in an enterprise environment as described
above can prove difficult, because of the complex nature of the environment. For
example, just to get the environment in place before software coding actually begins can
be technically and politically hard as well as time consuming. Such time consuming (and
hence budget consuming) tasks can kill an agile development project before it has even
taken off.

This paper is split into three sections. The first puts forward an agile development
platform and gives an example tying all the systems in the proposed platform together.
The second section discusses what the authors discovered during the implementation of
the example as well as problems and solutions in agile development in such
environments. Finally recommendations are made in the third section.

Section I: The Platform and Example

The Platform
This section describes a software stack conducive to agile development in the enterprise.

Open source software offers two advantages over traditionally licensed software which
are useful to agile development: simple and free licences making it quick to start using
the software (no need to go through the purchasing department of your company);
availability of source code which can help in debugging problems encountered during
software development of dependent applications. One problem with open source is that it
may not be supported for longer periods into the future, or that it is not even supported
at the time of use. By looking for software that is backed by companies providing
consulting and support services, this risk is minimised. It is precisely this which has made
Linux (the open source operating system) so successful in the server marketplace.

For these reasons the platform is based on open source software that is backed by
consulting/support service providers. The selection of the software is also based on the
authors own experiences of open source systems.

White Paper: Agile Software Development of SOA, BPM & ESB 2/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Modern enterprise architectures might include any of the following, amongst others:

 Web Server
 Application Server (Java EE)
 Messaging Engine (JMS)
 IoC / DI Framework (Spring, EJB 3)
 ORM (Hibernate)
 Web Services
 MVC Framework for GUIs (Struts)
 BPM Server / Management
 Databases
 Directory Server (LDAP)
 Mail Server (Remote access through a firewall)
 File Server
 FTP Server (Remote access through a firewall or VPN)
 SMS Mobile Network Notification
 Monitoring Systems
 Reporting and Statistics

Additionally such architectures might have the requirement for:

 Remote access via desktops or laptops
 Access to business partners
 Mobile access
 Local web access
 Local access via rich applications

Taking all these requirements into account and selecting software based on supported
open source systems, the proposed agile development platform looks as follows.

White Paper: Agile Software Development of SOA, BPM & ESB 3/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Figure 1: The Proposed Platform

White Paper: Agile Software Development of SOA, BPM & ESB 4/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Note that the above platform is considerably extensive – it includes many systems and
sub-systems. However, not all need to be used whilst developing an application. Only
those relevant to the architecture of the desired application need be selected.

There are also some caveats that come with the diagram:

 The BPM Server from Intalio could be integrated into the JBoss Application Server,
but due to licence restrictions of the Community Edition (free), it may not be. The
Community Edition actually runs inside the Apache Geronimo Java EE Application
Server, however this server was not the Application Server of choice due to the
better support / consulting services provided by JBoss and the fact that it is easier
to find a JBoss expert than it is to find a Geronimo expert – part of the aim of this
architecture is to allow a prototype to be grown into a full production system.

 The FTP Server may need to be accessed by Business Partners – this can be made
available to them over a VPN or, less securely, through a firewall.

 The Mail Server will probably need access to the outside world. As such it would
be granted access through the firewall.

 SMS Notification can be provided by subscription to an external Web Service
provided by partner companies (search Google for such companies).

Additionally, if required, the Apache httpd Web Server can be used to provide secure
connections over SSL to multiple domains. It then connects to the Tomcat Web Container
in JBoss via an AJP connector. Apache httpd can also be used for load balancing over
several instances of the web container in a cluster.

Architectural Layers
The platform encourages the use of architectural layers according to the following
diagram.

Figure 2: Suggested Layers in the platform

The presentation layer provides the end users with views into the system. In the example
provided below, this was in the form of a web application. Alternatives are rich clients

White Paper: Agile Software Development of SOA, BPM & ESB 5/23
Dr Ant Kutschera & Rowan Mountford
© 2008

which communicate with the platform using remote services. The BPEL Console is listed
in this layer, because it can provide (trained) business users with information on business
process instances which they have interacted with, although this is unlikely to be done in
reality, because of the complexity of the console. The console is really intended as a tool
for use by support teams.

The application layer provides a place for each application to have a façade (or façades)
into the business layer. These façades can provide the transactional demarcation
required by the application as well as bring together the services from the business layer
which they rely on. This layer would also include mappings which each application must
do in order to use more generic business services. As such, web services called by the
BPEL Engine would live here, as would the BPEL itself.

The business layer provides a place for hard core business services to exist. These could
be implemented using technologies like Spring or EJB.

The integration layer defines services and components which integrate the platform with
external or low level systems, like those from business partners or application databases.
Typically anything which the ESB connects to is in this layer.

Finally, the data layer is the place where object relational mapping (ORM) components
live. Additionally, connections to the file system or FTP could be placed here, although
they could equally be a part of the integration layer.

The Example
To test the platform, a realistic business case has been thought up and implemented
using the platform. The business case is as follows:

The maxant corporation has just acquired a global software supplier and
would like to roll out its internal purchasing process to all offices. The
internal purchasing process is one whereby employees can create orders
to purchase equipment and hardware that they need for their daily jobs.
Each staff member is given a credit rating, and can purchase up to that
credit rating. Purchase orders are submitted as a spreadsheet to a central
file server where they are processed manually by the purchasing
department who performs a credit check and approves large orders. Very
large orders are approved only by the VP of purchasing. Due to the
acquisition, these purchase orders may now be submitted in any currency
(but the purchasing department works in Swiss Francs). Furthermore, due
to the acquisition, there now exists the need (and hence budget) to partly
automate this process. Employees can use FTP over the VPN to submit
orders in spreadsheet format to the central server. Email should be used
as the notification mechanism. Web access should be used for approving
or declining purchase orders. The project should be completed as soon as
possible and rolled out globally. After a year, its success will be measured
and if proven, a second budget may be made available to extend it, such
that orders can be entered using a web form, as opposed to the existing
spreadsheet form. Since this is the first IT project being run after the
acquisition, maxant would like to prove the technologies and business
process by using an agile development methodology. The aim is to work
closely with the stake holders in order to give them constant feedback
and confidence that the project will deliver. As such, this project is highly
visible to senior management within the maxant corporation.

White Paper: Agile Software Development of SOA, BPM & ESB 6/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Figure 3: An example of the Purchase Order Spreadsheet

Taking these requirements, business analysts and architects would be able to formulate
the following technical requirements (in visual form):

Figure 4: Pseudo Activity Diagram

White Paper: Agile Software Development of SOA, BPM & ESB 7/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Figure 5: Deployment Diagram, showing dependencies

The activity diagram shows an ESB, BPEL Engine and a JBoss Application Server using
Spring. The reasons that these Technologies were chosen were as follows.

 Endpoints such as polling for file inputs are typical for an ESB. Furthermore, when
reading for files it is typical to process them in two stages. The first is to read and
archive the file, ensuring its raw contents has been captured in the system. The
second is to then validate and send the data for further processing. An ESB with a
JMS core is ideal in this situation, because the JMS engine is an architecturally
nice place for the raw data to await further processing – it simply waits there
temporarily until a subscriber comes along and is read to use it. If required, the
processing component can be scaled up by adding more instances, each of which
reads from the JMS queue, which automatically load balances the incoming files.
In order to parse the spreadsheets, the Apache POI library was used.

 BPEL was selected to model the high level business process since that process was
very clear. Furthermore, maxant corporation has a software selection policy in
place which dictates that where possible, business processes should be
implemented in BPEL and designed using BPM Notation (BPMN) so that they are
uniformly documented and maintainable. Additionally, the order size which
dictates whether it is large or very large needs to be able to change fairly quickly.
Ideally perhaps a rules engine might be used, however, these are fairly complex
for the agile development environment in question. A competent Business Analyst
could reset these thresholds for order size by editing the BPMN and getting it
redeployed, without the need for a developer to be involved – exactly the same
reason for using a rules engine.

 Spring was selected for building services so that they could be built in a common
library and deployed to both the ESB as well as JBoss. As such, there was then no
need to use EJB for the services (see later). Each client of these common services
then configures Spring depending upon its relevant transaction manager and
environment. Additionally, the ServiceMix ESB is based upon Spring and Spring-

White Paper: Agile Software Development of SOA, BPM & ESB 8/23
Dr Ant Kutschera & Rowan Mountford
© 2008

like configurations, so adding our own Spring Beans into ServiceMix components
was very easy.

Note that other architectures and designs could equally have been chosen. See later in
this paper for a discussion over the use of an ESB and BPEL in this example.

The BPEL was implemented using the Intalio Designer. The resulting BPMN is shown on
the following page.

While the BPMN may look complicated to untrained eyes, the process is relatively simple.
The upper “pool” (the layer shown at the top) describes the entry points into the
business process. The one on the left is the starting point for the process, called once the
spreadsheet is captured by the ESB. The interface on the right is the entry point after the
process is put on hold awaiting approval from purchasing (when the instance is re-
hydrated).

The middle pool shows the business process as it is executed in the BPEL engine. This
example is made up of tasks (all of which make calls to existing web services in JBoss)
and decision points (has the employee got credit, is the order large, is the order very
large). If the process is put on hold awaiting approval, it is dehydrated by the BPEL
engine until someone from purchasing re-hydrates the process instance by approving /
declining it using the web application.

The lower pool shows the external endpoints which are called. In this example, all of
them happen to be implemented in JBoss. In other examples, some may be provided by
business partners.

White Paper: Agile Software Development of SOA, BPM & ESB 9/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Figure 6: BPMN for the Example

White Paper: Agile Software Development of SOA, BPM & ESB 10/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Section II: Discussion
The example provided above was implemented using the platform described at the start
of this paper. There now follows a discussion about the authors’ discoveries during the
implementation as well as their recommendations regarding agile development in such
environments.

Service Architecture
As the platform being assessed is geared towards a SOA, services were created to
provide the detailed functionality required by this example. These services were as
follows.

Figure 7: Package Structure showing Services

All of the services listed above were implemented as Spring services. They were
implemented in a common library that was made available to both ServiceMix ESB and
JBoss AS. The Spring configuration was then provided by the library client (the server
using that library), for example the JBoss Web Application used the Spring Servlet
Configuration in order to specify that the services were to use the JBoss Transaction
Manager and take the MySQL JDBC Datasource from JNDI.

Additionally, the common library provided the centralised “payload” structure used within
the ESB. This structure was based on an XML schema (the ServiceMix ESB, like many
others today, passes XML between its components). Java XML Binding (JAXB) was used
to generate Java Classes (a form of Model Driven Development – MDD) to represent this
data structure as well as marshal and unmarshal the XML data out of and in to Java
objects at runtime. Binding was used as the mechanism to be able to programmatically
manipulate the XML data in Java objects, rather than having to parse raw XML,
potentially invalidating it (Java objects ensured correctly typed data for example).

The common library also provided Web Service façades which had been generated based
on Java Interface definitions. These web services were used to call the Spring services
from the BPEL engine. As this was an example, some of the methods provided stub
implementations (for example the Currency Service). In some cases, services delegated
work to other services.

These common services are described in more detail below.

White Paper: Agile Software Development of SOA, BPM & ESB 11/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Figure 8: Outline of the Send Mail Service

The Send Mail Service was used to send HTML email to employees, purchasing or VPs.
The Spring JavaMailSender was injected by Spring and provided an encapsulation for
sending email – it took its Mail Session from the JNDI tree. The private sendMail()
method did the majority of the work, while the public methods called it, passing in the
text to send in emails as well as the addresses to send the emails to.

Figure 9: Outline of the Order Service

The Order Service used Hibernate for persistence of the purchase orders. The
createOrder(PurchaseOrder, String) method was called by the ESB. Some methods
such as getTotalOrderPriceCHF(String) were intended to be called from the BPEL
engine (using the OrderWebService web service, which contained a light weight method
delegating the work to this Spring service). Other methods such as approve(String,
String) were called from the web application deployed in JBoss.

Figure 10: Outline of the Employee Service

The Employee Service used Hibernate to provide a read only view of the database in
order to determine if an employee had credit available in order to place a purchase order.

White Paper: Agile Software Development of SOA, BPM & ESB 12/23
Dr Ant Kutschera & Rowan Mountford
© 2008

This service was called from the EmployeeWebService which delegated its call to this
service. The web service was called from the BPEL engine.

Figure 11: Outline of the Currency Service

The Currency Service provided a stub implementation for converting from British pounds
(the currency used by the employees department) to Swiss Francs (the currency used at
maxant corp. headquarters). In the ideal world this would have looked up the currencies
according to some maxant policy, for example online with a partner or in a database that
is updated via batch as and when required.

Correlation
In order to put a business process instance on hold (dehydrate) and to start it up later on
(re-hydrate), as was required by this example due to the approval process, a BPEL
engine needs a way to correlate calls to the BPEL which belong together. In this case the
call to continue a waiting instance needed to include a correlation token so that the BPEL
engine could find the correct instance to continue working with. This correlation token
was the order ID. The ID was simply a Java UUID generated at the point when the ESB
was persisted the order to the database. The ID could equally have been generated from
the database or indeed in some other fashion. What is important is that the ID is unique
among all business process instances and that it is available upon starting the BPEL in
the first place.

BPEL at maxant corp.
The authors have come across several uses of BPEL. It should be made clear that in our
opinion, BPEL has limited use and is not a holy grail signalling the end of software
languages such as Java. BPEL is not useful for “programming in the small”, neither was it
ever intended for such. BPEL is however very good for two things. Firstly, one reason it
was created, was for the orchestration of web services. By this, it is meant that existing
web services which provide distinct business functionality, but which alone are not so
useful, can be brought together to provide fully functional applications, or even
composite application networks (several applications working in harmony to provide a
super application at the enterprise level, integrating multiple business units).

Secondly, BPEL is useful for long lived business processes. In the example, some
business process instances need approval from the purchasing department (if they were
large or very large orders). Once the process sent an email to the purchasing
department, it might be days before they respond to the email and approve or decline
the instance. The state of the business process instance needs to be saved somewhere,
and a BPM Engine is the ideal place for it. Business analysts and/or support teams can
use tools such as the Intalio BPM Console to view incomplete instances and understand
what they are waiting for or where they have failed.

For low level details of business processes (saving data to a database, processing data,
iterating over lists of data, anything else low level in relation to a business process), the
business process should delegate to an external (web) service. There are attempts in the
software world to bring lower level languages such as Java into BPM engines, in order to
include say database calls directly in the BPEL. Doing so however goes against the

White Paper: Agile Software Development of SOA, BPM & ESB 13/23
Dr Ant Kutschera & Rowan Mountford
© 2008

paradigm described above and means that processes have the potential to become
exceedingly complex. The point of BPEL is to model business processes, at a high level.

An interesting area where BPEL can be useful is where partner systems which it
orchestrates are not reliable. If a call to a partner system fails, the business process
instance is put on hold, but can be resubmitted at a later time. This initially sounds very
useful. However, the practicalities of it need to be examined. If your system is processing
millions of messages a day and just 1% are failing then already tens of thousands of
messages will need to be resubmitted. Will this occur automatically? Only if the BPEL
Engine provides notification of failed calls and provides some kind of API so that they can
be resubmitted programmatically. If this mechanism does not exist, then the effort
required to analyse the failed calls will bring the support team’s productivity to a halt.
Not only that, a batch process which can resubmit the process instances needs to be
written, deployed and maintained. Yet there is another problem here, namely what
happens to failed instances when a new version of the BPEL is rolled out? They still need
to be completed, but the old version is no longer available, Some BPEL engines may
allow such instances to be completed using the old version of the business process, but
what happens if for example a database is upgraded and the failed business process
instances cannot be completed because they will no longer be able to be persisted at a
point after the failed call to a partner? Problems like these need to be carefully analysed.

Overall, a company which is deciding whether or not to use BPEL should question
whether it wants to orchestrate its SOA in BPEL or perhaps by more simply writing
façades in its preferred technology (Java, C#, or whatever). BPMN itself is difficult to
study in a single glance because many of the details are hidden: the overall BPMN is easy
to view, but the conditions within decision points or details of mappings or correlations
are buried within other screens (or within BPEL code). Indeed, a branch coming out of a
condition can be labelled wrongly and mislead the person reading the BPMN. While
reading Java or C# is equally tough to the untrained eye, and while it too can contain
misleading information (badly commented code), the authors feel that whether you are
going to study BPEL or Java / C#, the effort and cost will be similar. So one needs to
consider the other advantages of each solution before deciding upon one or the other.
One such advantage of BPEL could be its ability to handle long lived process instances.
Another could be its ability to orchestrate unreliable systems, although the pitfalls of this
have already been discussed.

So to summarise, BPEL as the authors like to see it used, is for orchestrating web
services which implement the low level details of processes, and for saving state of long
lived processes. That is all, nothing more, nothing less.

Development Environment
The development environment used throughout was Eclipse. Version 3.3 (Ganymede)
was selected for the platform since it was the latest stable release at the time of writing
this paper. The only additional plugin which was added was the Quantum DB plugin
which provides a database development environment. Even then, the standard MySQL
console was used most of the time for executing scripts or viewing database structure or
data.

The Community Edition of Intalio BPM Designer is also based on Eclipse. However when
the Community Edition is downloaded in includes its Eclipse, as opposed to being able to
install the designer as a plugin it into an existing installation of Eclipse (to do that you
need to buy a licence from Intalio). As such, the Intalio Designer was run as a separate
development environment.

White Paper: Agile Software Development of SOA, BPM & ESB 14/23
Dr Ant Kutschera & Rowan Mountford
© 2008

The JBoss Server plugin in Eclipse was used for deploying to and running JBoss. This
plugin is now a standard part of the Web Tools Platform (WTP) also included per default
in Eclipse 3.3.

Reasons for choosing Eclipse were:

 Wide use within the industry, making it easy for companies using the platform to
find staff to program in it,

 Wide range of plugins available for it, making it extensible according to customers
demands

 Integration with the Ant build tool, allowing for custom build scripts to be
implemented, for example allowing the generation of the data layer (Hibernate
objects and mappings), or build and deployment of libraries.

 Integration with version control systems like CVS and Subversion, allowing
version control to be included in the agile development foreseen for this platform
(useful for refactoring and code reviewing)

 Excellent Web Service and Web Service Client generation wizards based on Java
Classes or WSDL definitions

 Authors extensive experience with it.

Hibernate was used for the data layer. It provides a generation tool in order to generate
the Hibernate Mappings as well as the POJO Java classes representing the tables. In
order to enable agile development, it is recommended that the database be created as a
model, and that all mappings and POJOs be generated from it (a form of model driven
development – MDD). This should provide the fastest way to develop and work with a
database. Additionally, it is recommended that each table have a column / primary key
which is generated from the database (as sequence or autoincrement in MySQL
terminology). The equals() and hashCode() methods can be implemented on the
generated objects in order to include these details. POJO Constructors should also define
an ID (always negative to differentiate between an unwritten object and one which
emanated from the database). See the Hibernate reference for more information.

Eclipse 3.3 includes a very good web service generation wizard which was used to
generate all web service clients for calling the BPEL from either the ESB (to start the
process) or from the Web Container (in order to continue a process instance awaiting
approval). Several Spring services needed to be called from BPEL and these were turned
into web services by generating web services based upon the interface of the Spring
service. These web services then simply called through to the Spring Service. Since the
web services lived in the web container, they could access the Spring services using the
WebApplicationContext made available through the Spring ContextLoaderListener
which was loaded when the web application started.

Finally, the Intalio BPM Console was used for testing the BPEL part of the system. It is a
web application where business processes can be explored and business process
instances can be examined. If an instance is held up due to an error, the console can
show exactly where the problem is and allows the instance to be resubmitted at the point
where it previously failed. These capabilities were extremely useful in debugging the
BPEL and web service orchestration and helped to speed the development up
significantly.

EJB related to the Example
In the example that has been implemented to test the platform, EJB was not used. The
primary reason for not using it was that a common library based on Spring was chosen
because the ESB already uses Spring and the Web Container could be easily extended to
use the same. To call services from the web container hence did not require calls to EJB.
In fact, to make those services available in EJB would have required additional work in

White Paper: Agile Software Development of SOA, BPM & ESB 15/23
Dr Ant Kutschera & Rowan Mountford
© 2008

writing delegates which provide the same interface and simply call through to the Spring
services in the EJB container. In an agile development environment, one aim is to reduce
the need for additional work!

One good reason to put the Spring services inside EJB wrappers would have been to
check the security context under which the services were running. However, all calls to
the services made from the web Container already had a security check within the web
container (Java EE declarative security). In the ESB this was a different story – it simply
called the Spring service to persist the purchase order. Here, no security check was
made. By putting the services in the EJBs layer, security could have been checked (if
declarative security were put on EJB methods). But this would have required the ESB to
make the service call in an environment able to communicate with EJBs securely. An
alternative option would be to enable security within Spring, using an extension such as
ACEGI Security available in Sourceforge. Another alternative would have been to use
Spring remoting to make the service available remotely (in the web container). The ESB
would then call the remote service using HTTP Basic Authentication to connect and
authenticate (see http://blog.maxant.co.uk/pebble/2008/08/07/1218135480000.html).

Façades and Transactions
A façade is a standard software design pattern which encapsulates calls to several lower
level services or beans. It can be used to set the correct transaction or security context
before calls to lower levels are made. It can be used to encapsulate a part of a business
process in order to make that part reusable by several parts of the system.

An example is sending an email after making a database update. Here, one would use
the Order Service to update the database and use the Email Service to send the email.
But ideally, a client would be able to call a single method to do both of those things in a
single transaction, so that if the email could not be sent, the database would also not be
updated. Alternatively, if BPEL were orchestrating this, the BPEL engine might fail to send
the email, but life would be rosy again when the instance were resubmitted by someone
in the support team or a batch retry process.

In the example, this functionality was implemented within the Order Service which
provided a façade method to encapsulate both the database update and the sending of
the email. This method was then made available through the Order Web Service, so that
it could be called from the BPEL engine.

One option might have been to make a web service call both the Order Service and then
the Email Service. However, a web service has no transactional context and can only
start a transaction by making a call to a service (under container managed transactions –
CMT – in any case). So if the database call made from a web service were successful but
the email call failed, there would be no rollback of the database meaning that we didn’t
get what was required, namely the two steps within a single transaction. If the database
call were idempotent, this would not be so critical, as the failing email would cause a
fault in the call from BPEL to the web service. The BPEL process instance would fail and
await some maintenance where it would be resubmitted to the web service. During this
second call to the web service, the database update would be called again (remember it
had not been rolled back the last time because email sending was in a different
transaction). If the database call were not idempotent, this would cause problems (e.g.
duplicate data). So the strategy chosen does depend upon knowing whether successive
calls to say a database would be harmful or not.

The reason that these two steps were not called independently from the BPEL Engine was
because it was deemed too complex for the BPEL engine to worry about. Remember, in
the authors opinion, BPEL should be kept simple and to the point, its aim being to model
the business process from a high level perspective.

http://blog.maxant.co.uk/pebble/2008/08/07/1218135480000.html

White Paper: Agile Software Development of SOA, BPM & ESB 16/23
Dr Ant Kutschera & Rowan Mountford
© 2008

ESB in the Example
An ESB is typically used when integrating file systems into an enterprise application.
Indeed the ServiceMix ESB comes with file and FTP adapters for reading and writing to
the file system.

Reading a file as a starting input to a process is actually a two step process – reading the
file successfully, and then starting the business process. The first step has some
complexities that are worth discussing. First of all the file system can lock files. Secondly
the file system might be having a file streamed to it at the point where the ESB tries to
start reading it. Depending upon whether the file adapter considers these points you can
run into trouble while reading the file. The same is true of writing or moving (archiving)
files.

The second step of starting the business process also has dangers – the BPEL Engine
might not be running at the time which the file is read. If this is the case, what should
happen? Should the file be left on the file system to be attempted later? Should the file
be stored inside the ESB until later? In the authors experience the best approach with
ESBs is to use a design pattern like this:

 Reads the input without validating it, and store the data in a JMS queue
 Transform and Process the data from the queue and store to another queue
 (Write the data from the second queue to the target system)

The third point is in brackets as it can be included into the second point, depending upon
whether the transformation and processing is complex or not. In the example, the
second and third points were indeed combined, because the transformation was
negligible. So the ESB contained two components (the task blocks below):

Figure 12: ESB Components

The first component (read and archive) read the file as a raw binary stream. Since the
second component (transform and process) is the one which validates the data, this raw
stream needed to be sent over JMS to the second component. The ESB however requires
that XML data be sent between components. As such the central XML structure used to
house the raw data contained a string element which was filled with Base64 encoded
data built from the binary stream. The data was encoded and sent by the first
component. To marshal and unmarshal the XML data, JAX-Binding was used.

The second component decoded the data and used the Apache POI Library in order to
read and process the data as a spreadsheet. The data was stored directly to the database
by calling a method in a common Spring service. To start the BPEL process, its Web
Service end point was called, using a generated client within the common library.

White Paper: Agile Software Development of SOA, BPM & ESB 17/23
Dr Ant Kutschera & Rowan Mountford
© 2008

To cope with the fact that the BPEL engine might not be running at the time when the
call to it was made, the second ESB component cleverly caught such faults, rolled back
the database transaction where the purchase order had been persisted, and resubmitted
the data to the end of the JMS queue. The XML sent back to JMS also contained a counter
incremented which was incremented, and which tracked how often the ESB had
attempted to submit the data. After a third failure, the ESB sent the data to a dead letter
queue (DLQ). Whilst not implemented in the example, an application could have been
written to subscribe to the DLQ and react appropriately, for example sending an email
and archiving the problematic file to the file system for later resubmission.

Thoughts on Agile Development using this Platform
In order to be able to develop in an agile manner, using the platform described in this
paper, there are several things to consider.

Reducing the amount of code written, unless it is almost certain that it will be required in
the future will speed up development. For example, don’t use BPEL just because it looks
nice and might help document the system unless there is a valid business case for using
it in the first place. Another example might be to not add functionality in a service
because it may one day be useful – wait until it becomes a definite requirement (and
refactor if necessary). Similarly, there is no need to worry about performance until it
becomes an issue – writing code to be more efficient will cost more than making it
efficient at a later date when the bottle necks are known.

The aim is to reduce the time to demonstration and delivery, which when done iteratively
relies on the ability to refactor. In order to allow refactoring, a set of good unit tests
must be created. Getting the coverage of unit tests right is hard, because aiming for
100% coverage will required the same amount of effort (if not more) as required to
develop the services themselves. Aiming for only 25% coverage on the other hand will
mean that there are likely to be bugs in the system.

Generate as much code as possible. The paradigm used in this platform was to generate
the data layer from the database – the SQL is the model or master copy. Web Service
Clients as well as Web Services were generated where possible.

Services were developed to provide business functionality, not CRUD functionality (simple
create / read / update / delete). As such, services might embrace several tables, as
required. Services were refactored only when duplicated code was found, in which case
the duplicated code was refactored into its own service method and “super” services were
created to call lower level services. The result was a service hierarchy, where the top
level services encapsulate lower level services in a façade. As such, these façades could
end up orchestrating your services. This is a real alternative to building a BPEL layer, as
already discussed above.

Release frequently! To do this, each piece of functionality that is built could be done on
its own branch under source control. Before a branch is merged into the head or trunk or
main branch, it gets the head merged into itself. All unit tests are carried out to ensure
the system still works (including new tests to test the new functionality). The branch is
then merged into the head (during this merge, check the two are now identical). An
“integration token” can/should be used to reduce the chances of several people merging
into the head at the same time as this can get messy. Anyone breaking the build must
pay a fine to the rest of the group (a slice of cake each for example).

The customer (or their representative) should test and play with releases as they become
available. He doesn’t need to take every single one, but should update what he uses
frequently. For this to be useful to him, build the application as a thin but end to end
capable application. As time passes, add more and more functionality to fatten it out.

White Paper: Agile Software Development of SOA, BPM & ESB 18/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Avoid building a system which is functionally rich (fat) at one end (does everything with
the input during the first step but then does nothing afterwards), since the user will not
be able to use it. It is better to build something which takes un-validated input and uses
it to complete a process as far as it can. You can build stub services to help you do this
which will also define the interfaces which these services need. Afterwards, individual
developers can go off and implement these services when they have the time, but in the
mean time, the user can use his system from end to end. You can define assumptions
like “the system assumes the data being input is valid”, in order to communicate the
lacking functionality to the user at each stage. Building applications in this manner also
allows you to get a feeling for where the most effort will be required, as opposed to
simply implementing a sequence of steps in a business process from start to end and
suddenly realising that the last step in the process will take the most effort and there is
no budget left! If you run out of budget on a system where you have started thin and
fattened as you go, it may not matter so much to the client that the last bits of
functionality are not implemented, because at least they can use the system if they
follow the list of assumptions you provide them with. Of course, if you plan your
development right from the start, it will help, but a detailed plan and analysis goes
against the point of agile development, where the aim is to deliver working systems
(although perhaps not fully functional) as soon as possible.

Databases
In order to maintain some form of structure and dominance over the data in the entire
system, several database schemas were used. Each application had its own schema.
Additionally, a central “Application Schema” was created for application relevant data,
rather than configuration data. The database schemas were as follows.

Figure 13: Application Schema

The Application schema held any tables which are used by the “application”, whether it is
in the ESB, BPEL engine or Application Server.

Figure 14: JBoss Schema – Security Realm

White Paper: Agile Software Development of SOA, BPM & ESB 19/23
Dr Ant Kutschera & Rowan Mountford
© 2008

The JBoss schema held a security realm, based on credentials and a list of roles per user.

Figure 15: James Mail Schema

The James Mail schema contained the “inbox” table which held mail messages in the
inbox, a “virtualusertable” for holding relationships between email addresses and users
inboxes and the “users” table which held the users and their credentials.

Figure 16: FTP Schema

The “ftp_user” table held user / credential information for the FTP server.

Changes required to Selected Software
In order to get all of the selected software to run at the same time and with a common
library, several changes were required. These are listed below:

 ServiceMix ESB was upgraded to Spring 2.5, by removing the existing Spring
libraries and dropping the latest Spring library in, in their place,

 JBoss had the mail session, JBoss data source and application data source added
to its JNDI tree,

 JBoss was configured to use a database security realm based on the JBoss
schema shown above,

 The Axis library was added to the JBoss lib path, as this was the only way in which
Axis could be successfully used – otherwise class loader issues were a problem,

 Intalio BPMS, ServiceMix ESB and JBoss were reconfigured to use independent
ports, so that they could all run at the same time on the same host.

White Paper: Agile Software Development of SOA, BPM & ESB 20/23
Dr Ant Kutschera & Rowan Mountford
© 2008

Maturity of Selected Software
First of all, JBoss, MySQL, Spring, Hibernate, Apache httpd (Web Server), Struts, Apache
Axis and James Mail server are all relatively mature products which have been around in
several versions for some time as well as being tested in production environments by
many users. As such, there were no problems with these products during the example.

It should also be mentioned that all applications ran using Java version 6 (the latest
stable release).

Apache ServiceMix was deemed to be relatively immature. The documentation for this
product is very poor. Functionality of the adapters is also not too mature, for example
the file adapter does not allow for renaming during archiving (in case the archive already
exists), nor does it roll back the file reading transaction if archiving fails because the file
already exists (at least not when it is used out of the box). This resulted in the same
input file being submitted to the BPEL over and over again! As such a custom component
needs to be written, making it expensive. Additionally, although it is based on the Sun
JBI Specification, there is no guarantee that a deployment deliverable will run on another
ESB, although this is really a failing in the JBI specification. Compared to the EJB
specification, the JBI specification does not go into enough detail to define what a
component must look like. Additionally, configuration of a component is contained within
a zipped archive (for example the URL of a web service to call). This is poor, since it
means that a client of a component may need to take the archive, extract it, update the
deployment descriptor and re-archive it before it can be deployed. The Java EE
specification on the other hand allows a level of indirection to be introduced which means
the deployment descriptor in an archive must only refer to a name, which can then be
configured within the application server, using JNDI. At runtime, the Java EE component
finds the required reference in the JNDI tree. ServiceMix does not appear to offer such a
level of indirection, making deployment an ugly task.

The Intalio BPEL engine (based on Apache ODE) was relatively stable and reliable. The
documentation for the engine and the Intalio Designer were fairly good (the examples
which existed contained step for step implementation guilds). However, the Intalio
Designer has a few things which took getting used to. For example it is often required
that a view in the designer be closed and reopened, in order for it to tell you the truth.
Or if artefacts like XSDs were deleted, references to them might linger and sporadically
reappear, causing compile errors which would simply disappear with a second compile.
Another example was that the authors found a bug whereby the GUI fails to validate
BPEL even though it is valid BPEL, not allowing the model to be saved (the bug was
confirmed by Intalio). Another potential bug was found with correlation whereby the
engine would correlate messages only if XML elements were used as the correlation
token, rather than XML attributes. A somewhat annoying feature of the Intalio Designer
is that if for example a BPEL property name is changed, that change is not propagated to
the parts of the BPEL where the property is used / referenced. So the change needs to be
made manually in all places. A modern IDE in 2008 is expected to be able to help with
such refactoring by allowing the change to be made in one place and letting the IDE
propagate the change throughout the BPEL. All of these incidents lead the authors to
classify the Intalio Designer as somewhat unready for the masses. However it should be
noted that none of these problems meant that the BPEL model could not be implemented
and deployed – all had workarounds. A nice feature of the designer is the ability to
deploy with a single click. Of course this is less useful where an automated build process
based on a continuous integration build server is required.

For the above reasons, it is recommended that development with the Intalio Designer be
done incrementally in small steps: implement, test, debug, over and over again. This
might slow down the implementation however it reduces bug fixing time and also means
there is always a running model, which is useful for the agile development requirement.

White Paper: Agile Software Development of SOA, BPM & ESB 21/23
Dr Ant Kutschera & Rowan Mountford
© 2008

The one useful feature of the Intalio BPM Console (or perhaps the Designer) which was
notably missing was a “debug” or “simulation” feature whereby one could step through a
business process instance seeing its state after each step. The data for each step was
available within the console, so it should not be too long before the tool is extended to
include such functionality, which is after all available in most commercial process
modelling products on the market.

The authors have little experience with the Ranab FTP Server, however for proof of
concepts it is adequate. Whether it can perform under load has yet to be tested by the
authors, and as such no recommendation can be made. What is useful is that it is
configured in a database. Since FTP, Email, JBoss Security and application data are all in
the database, they could be tied together to ensure referential integrity of the entire
system. Indeed an administrative GUI could be provided for managing such data
centrally, allowing the configuration of the environment to be quick and consistent, in
turn allowing the development of an application to get under way that much quicker.

Apache DS was not actively used in the example.

The entire software stack was tested on Windows XP, however, since it all runs on Java,
it all has the ability to run under any operating system supported by Java.

Development Efficiency
Whilst developing the example, the authors noticed that it took a while longer than
expected. The expectation was borne out of the experience of building applications like
the example within a single server environment, where everything was build in an ESB or
everything was build in an application server. The architectural decisions to use a BPEL
engine, ESB and an application server meant that considerable time was lost in
development.

The creation of the BPEL (including debug and testing time) was the slowest. Partly, this
is because BPMN is not as easy to study as a Java class which performs the same
functionality – conditions, properties, variables, correlation, etc. are hidden. One
alternative is to read the BPEL which is generated, since this contains most artefacts
(except WSDL definitions of external services and XML schema definitions of data
structures), however the BPEL cannot be simply edited, because the BPEL IDE did not
generate in two directions – it could only generate BPEL from BPMN. This led the authors
to feel that BPEL implementation efficiency alone is certainly not a good reason to select
the technology.

On the other hand, it should be noted that a BPEL engine does bring some added value
into play, in the production environment. Most of all, the BPM Console (used for
monitoring process instances) brings very useful debugging and monitoring functionality,
which allows a support team to quickly analyse the problems with a process instance.
Based purely on an application server, such analysis can be painful because the state
between each step is not normally stored, meaning that it can be impossible to re-run a
bug exactly how it happened in the productive environment.

Statistics and Reporting
While not included in the example, the authors experience has shown that of collection of
statistics about how an application is used is a worthwhile exercise. Traditionally,
statistics might be gathered using some data warehousing techniques, trying to gather
the data together from several existing data sources. In our experience, it is very simple
to add a little library that reports statistics data to a table or two. This has the advantage
over traditional data warehousing, that exactly what is required get logged and not what
happens to be available elsewhere.

White Paper: Agile Software Development of SOA, BPM & ESB 22/23
Dr Ant Kutschera & Rowan Mountford
© 2008

If for example the unique key of a row is needed, then it should be logged, as opposed to
the friendly yet non-unique name that might be logged elsewhere. Join statements can
be used when generating reports to make them user friendly. Alternatively, both the
unique key and friendly name can be logged - making the database human readable, and
providing accuracy in reports that need it. In one project we logged over 60 columns,
allowing us to create around 30 reports (letting users drill down in detail where they
needed it). Of course, if you log that much information, you need to estimate your data
growth rate (about 20 Mb a day in that particular case) and define a suitable strategy for
deleting or archiving old data, before you run out of disk space, or worse, start paying
the data centre for additional space when it isn’t really needed.

Section III: Recommendations
The platform proposed in this paper is suitable for agile development of enterprise
systems, so long as the advice given above is heeded.

While the ESB is somewhat immature in the authors’ opinion, it suffices for integration of
file and FTP systems. For other integration, it may well be as simple to write a JCA
adapter and implement the integration inside the EJB container of the Application Server.

The decision to use BPEL should be weighed against orchestrating services in the
Application Server. BPMN is not simple to read and can be misleading if for example
condition branches are wrongly labelled (since the actual condition logic is hidden inside
the BPEL, not visible in the BPMN on the branch). However, the requirement to maintain
long lived business process instances would be a good criterion for selecting to use the
BPEL engine. Under no circumstance should any complex logic be housed in the
processes deployed to the BPEL engine.

Jboss provides a very stable and reliable application server upon which to base agile
development projects. Eclipse provides tooling to make development of Java EE
components, their deployment to the application server and the running of the
application server efficient.

The use of Spring throughout an agile application will significantly increase the
productivity of the development team. While EJB 3 might offer similar mechanisms to
build an application based on configuration, it does not include the libraries which Spring
does, for example JDBC and email templating.

In order to be able to release a system frequently and reliably, unit tests must be written
to cover a large proportion of the project. This allows it to be refactored as and when
necessary, as new functionality is added to the application.

Any application developed in an agile manner should be built “thin” – providing an end to
end scenario from the very start. This end to end scenario can then be fattened up with
additional functionality as time goes by. This ensures that the customer can always use
the system and that if a point in time comes where budget is all used up and the
application is not complete, that it will run to some extend from end to end, rather than
being fully functional for part of the process and completely non-functional for the
remainder of it.

For any questions regarding the example, the platform or indeed anything mentioned in
this paper, both authors and their companies are available to provide consulting services.
Our contact details are below.

White Paper: Agile Software Development of SOA, BPM & ESB 23/23
Dr Ant Kutschera & Rowan Mountford
© 2008

References
Apache DS http://directory.apache.org
Apache httpd http://httpd.apache.org
BPMN http://www.bpmn.org
Eclipse http://www.eclipse.org
Hibernate http://www.hibernate.org
Intalio http://www.intalio.com

http://bpms.intalio.com
JBoss http://www.jboss.org
maxant http://www.maxant.co.uk
maxant Blog http://blog.maxant.co.uk
MySQL http://www.mysql.com
Ranab FTP http://javaboutique.internet.com/FTPServer
ServiceMix http://servicemix.apache.org
Spring http://www.springframework.org

About the Authors
Rowan Mountford works as an enterprise architect for Logica UK and has interest in SOA,
BPM and ESBs from his day to day work.

Dr Ant Kutschera has nearly 10 years experience of implementing software in the
enterprise, in all aspects of the software life cycle, including but not limited to
requirements gathering, architecture, design, programming, testing, delivery, support
and maintenance. He currently works for various clients as an independent consultant,
specialising in software architecture, Java EE, Rich Clients and SOA. His interests also lie
in ESB / EAI. He can be contacted through whitepapers@maxant.co.uk.

http://directory.apache.org
http://httpd.apache.org
http://www.bpmn.org
http://www.eclipse.org
http://www.hibernate.org
http://www.intalio.com
http://bpms.intalio.com
http://www.jboss.org
http://www.maxant.co.uk
http://blog.maxant.co.uk
http://www.mysql.com
http://javaboutique.internet.com/FTPServer
http://servicemix.apache.org
http://www.springframework.org
mailto:whitepapers@maxant.co.uk.

