
White Paper: Enterprise GWT  1/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

White Paper: Enterprise GWT 

Combining Google Web Toolkit, Spring and Other Features to Build 
Enterprise Applications 
By Dr Ant Kutschera & Barbara Spillmann 
January 2010 
 
Google Web Toolkit (GWT) provides developers with a powerful means of developing 
AJAX front ends without the worry of having to maintain complex Java script libraries to 
support multiple browsers and browser versions.  
 
GWT also provides support for Remote Procedure Calls (RPC) to the server. Since April 
2009 the Google App Engine has existed, which allows developers to deploy their GWT 
applications and also provides support for Java Data Objects (JDO) and the Java 
Persistence API (JPA). 
 
However what is missing for GWT to be deployed to a modern Enterprise environment is 
a service framework providing dependency injection and inversion of control (IoC), 
transaction demarcation and security, such as that provided by Spring or Enterprise Java 
Beans (EJB) 3.0. Furthermore GWT does not define any patterns for User Interface 
designs, or composite widgets. 
 
This paper describes how to successfully integrate Spring into a GWT Application with the 
aim of creating a fully scalable development framework for deployment in the Enterprise 
and beyond (including simple and small applications), with very little start up time being 
required, because you can download the demo application. It includes UI Patterns and 
composite widgets to improve the development of the front end. This GWT Demo 
Application is live at http://gwtdemo.maxant.co.uk and is available for download at 
http://www.maxant.co.uk/whitepapers.jsp. 

General Architecture 
Figure 1 shows the architecture of a GWT application which uses Spring and Hibernate in 
the back end. A GWT Application runs as Javascript in a Browser (1) and makes requests 
to the GWT RPC infrastructure running in a Web Application (2). RPC calls to and from 
the server, can use basic Java types such as String, Integer, etc. as well as collections 
out of the java.lang package. A full list of java packages and classes that GWT can 
translate automatically is provided in the JRE Emulation Reference 
(http://code.google.com/webtoolkit/doc/1.6/RefJreEmulation.html). However in order to 
keep interfaces efficient, Transfer Objects (TO) are used to pass information to and from 
the server (see discussion later). 
 
Once inside the web container, an RPC call is delegated to the Spring framework (3) via a 
Façade which has four main functions. Firstly, since it is a Spring service it provides 
transaction demarcation. Secondly its job is to map from Transfer Objects into 
Persistence Objects (PO, which are used by Hibernate when mapping Java Objects to the 
Database and back) or a Business Object Model (BOM). The decision whether to map to a 
BOM first, or straight to POs, depends on the design of the back end. Thirdly, this Façade 
ensures that security is checked and the caller is authorised to make the call. Finally this 
Façade orchestrates the call by delegating to lower level services which implement the 
business logic or persistence logic. 
 
Persistence is taken care of by Hibernate (4) and the database. Persistence Objects (PO) 
and their mappings are generated out of the database schema, which is used as the 
“master” in this generation process.  

http://gwtdemo.maxant.co.uk
http://www.maxant.co.uk/whitepapers.jsp
http://code.google.com/webtoolkit/doc/1.6/RefJreEmulation.html


White Paper: Enterprise GWT  2/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
As such, the server side hierarchy (including layer responsibilities) is shown in Figure 2. 
 

 

Figure 1: General Architecture 

 

 

Figure 2: Server Hierarchy 

The User Interface (UI) also has some noteworthy points which are discussed in this 
paper. As such, this paper covers the following points: 
 

Java EE Web Server 
(e.g. Tomcat) 

Web Application 

GWT RPC Layer 

Spring 

Hibernate 

Client (Browser) 

Javascript Engine 

GWT 
Application 

Database 

1

2

3

4

TO 

PO 

GWT RPC Service 
JSON <-> Java 

[ApplicationLayerService] 

Spring Façade 
Security, Transactions, TO <-> PO, Orchestration 

[OrchestrationLayerService] 

Business Services 
Business Logic 

Persistence Services 
Persistence Logic, CRUD functions 

Hibernate 
PO <-> SQL 

Database 
SQL 



White Paper: Enterprise GWT  3/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 Demo application – the downloadable application which serves as a basis for the 
points discussed here, 

 UI wizard pattern, 
 Model-View-Controller design pattern for the UI, 
 Security throughout the application, 
 Transactions, exceptions and dependency resolution, 
 File Upload pattern for GWT, 
 Composite Widgets and a UI factory, 
 Captcha technology and GWT, 
 Multiple GWT modules in a single application, 
 Google Analytics integration, 
 Deployment for development and testing, 
 GWT maturity and its future. 

Demo Application 
In order to demonstrate the various themes discussed in this paper, a demo application 
was written, which is live at http://gwtdemo.maxant.co.uk. This application is a simple 
shop which sells artist’s designs, which are printed out and shipped to the customers. 
Artists may also register and upload their designs and manage them using admin screen. 
Back office staff who pick and ship orders have screens to empower them to do their job. 
Administrators may also manipulate designs, artists and customer profiles directly, using 
admin screens. Various users have been created for the site, each with different roles. 
The login screen provides the details of these users so that you can play with all facets of 
the application. You can download the complete application from 
http://www.maxant.co.uk/whitepapers.jsp. 
 
Figure 3 shows how the various actors/roles interact with the site. It also shows how the 
application is made up of two GWT modules, namely a “shop” and an “admin” site. 

 

Figure 3: Actors Involvment 

Screen flow is shown in Figure 4. Note that you can get to any screen using the menu, 
which is built using the users roles, so for example a customer cannot view sales orders 
which need to be picked, rather they can only view their own sales order history. 

unregistered 
users 

customers pickers 

artists 

admin 

shop 

admin 

browse and 
purchase 
designs 

browse and purchase 
designs, view order 

history 

manage 
designs 

and 
content 

order 
fulfilment 

manage 
profile, 

upload new 
designs, 
purchase 

http://gwtdemo.maxant.co.uk
http://www.maxant.co.uk/whitepapers.jsp


White Paper: Enterprise GWT  4/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 

Figure 4: Screen Flow 

User Interface Patterns 
Most applications consist of a number of “pages”. Sometimes these pages can be 
selected using a tabbed pane, other times these pages are selected using a menu or 
wizard. The demo application consists of 11 pages for the shop and 8 pages for admin. 
For the shop, the screen flow in Figure 4 shows clearly that a process of purchasing 
designs can be modelled using a wizard. As such, GWT does not provide such a class and 
so one was designed and implemented, as shown in Figure 5. 
 
 
 

home 

gallery/ 
shop 

checkout 

payment 

confirmation 

shop 

designs 

artists 

pending 
orders 

admin 

details 

problem 
orders 

discarded 
orders 

order 
details 

profile 

design 
list 



White Paper: Enterprise GWT  5/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 

Figure 5: Wizard Classes 

The main entry point for each module is a wizard which subclasses the AppWizard shown 
at the bottom of Figure 5. The wizard then has all the functionality it needs to display 
multiple pages. Each time a page is changed, a history token is added to the browser, so 
that the forward and backward buttons work, as provided for by standard GWT. 
 
The very first RPC call is made when the module loads and is done to get the session 
information and master data. The session information includes user data such as their 
name, unique ID and a list of their roles. Even for unauthenticated users, it is also useful 
to know that they should not see any extra menus, for example updating their (non-
existent) profile. Master data such as a list of all artists is also loaded and cached, client 
side, for performance reasons. The demo application does not contain that much 
functionality, but in the real world the customer might need to also choose which media 
the design should be printed on. In that case, media types would be ideal candidates for 
master data which is cached on the client. 
 
When this data is loaded, the Wizard caches it in its model, as shown in Figure 6, and 
notifies all master data listeners, such as the specific Wizard implementation itself which 
uses the user’s roles, to build the menu dynamically. 
 



White Paper: Enterprise GWT  6/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 

Figure 6: More Wizard Classes 

Figure 6 gives more details about how the server is called. Importantly, GWT RPC is an 
asynchronous technology because of the nature of browsers threading models: all 
Javascript runs in one thread and that thread is also in charge of rendering the UI. So if it 
is blocked waiting for a server response, the UI may freeze.  
 
As such, the mechanism for calling the server in GWT is somewhat different in 
comparison to a traditional rich client written in Java Swing or Eclipse Rich Client 
Platform (RCP). Traditionally a server call is started on a separate thread from the UI 
thread so that updates to the UI are not blocked and when the server call returns an 
event is fired to the UI thread so that it can react and refresh itself at the next 
opportunity. 
 
With GWT the mechanism is a little different because Javascript cannot start new 
threads. Instead, the browser does it in the background. In order for the browser to 
notify Javascript that a response has arrived, you must pass it an instance of a callback 
interface which it uses to call the single (UI) thread once the server returns. Figure 7 
show the details. 
 



White Paper: Enterprise GWT  7/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 

Figure 7: Traditional vs Asynchronous Server Mechanisms 

This asynchronous callback mechanism is an area where the same coding pattern is used 
repeatedly. So in the demo application, a mini-framework was written to make provide 
an abstract implementation which handled several things: 
 

 A “wait” icon, indicating that a server call was in process: , 
 Setting of the hour-glass cursor when server calls were in progress, 
 Error handling. 

 
This functionality is handled in the WizardServerCaller shown in Figure 6. A counter is 
maintained which is incremented with each outgoing request and decremented with 
every incoming response. This way the client knows exactly how many outstanding 
responses there are and can ensure that the cursor shows the hour-glass and if the page 
is Waitable, then for example its animated “wait” GIF can be set visible. This way the 
user knows that a call to the server is still outstanding, because in the traditional world of 
browsers, the user sees that a server call is still underway in that the status bar contains 
a progress bar. With AJAX this progress bar is not always used by the browser, because 
the call is asynchronous and occurs in the background. The error handling mentioned in 
the list above is described in more detail in Figure 6. 
 
Figure 8 shows a standard Model-View-Controller (MVC) pattern being used in the demo 
application. There are a number of important concepts shown. 
 

<<proxy>> 

Callback Controller 

instantiate 

event 

refresh 

Model 

Traditional synchronous, 
e.g. Swing or Eclipse RCP 

Asynchronous Ajax / GWT 

UI Controller Server 2nd Thread 

Model 

event 

refresh 

UI Server 



White Paper: Enterprise GWT  8/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 

Figure 8: MVC and Packages 

Firstly, the model, the controller and the server caller (which is probably part of the 
controller in the academic world) are in a different package than the view. As such, the 
controller does not even need to know the view, but only its interface. This is nice 
because the view is now totally decoupled from the rest of it, meaning that changing the 
view is simple, and that is a major idea of MVC. Moreover, because the model is in a 
different package than the view, one can enforce the idea that the view only knows the 
model in a read only sense, yet the controller which is in the same package can write to 
the model. This is also important to MVC and allows business rules which are not 
implemented in the server to be centrally located in the controller, rather than randomly 
scattered throughout the view, which is typically large and made up of many classes. 
This pattern has been copied from Eclipse IDE implementation where bundles 
(components) are typically split into two deployable bundles, namely a “ui” bundle and a 
“core” bundle. 

Security 
For any application which provides multiple roles, security is used to allow authorised 
users to call certain functionality. For example, an artist may edit their own profile 
information, but a customer may not edit an artists profile information. 
 
The users roles are loaded as part of the session information in the first RPC call which is 
made when the application loads. Based on this information the client shows links to 
various pages for example in the menu, or as icons on the screen, for example to edit a 
profile, as shown below in the red circle: 
 



White Paper: Enterprise GWT  9/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 

Figure 9: Example of links related to security roles 

While the user interface knows about the users roles, it is important to take the security 
a step further to ensure hackers cannot break in where they are not welcome. In the 
example shown, a hacker could enter a URL into the browser to cause the screen to be 
shown where the artists profile can be modified. Alternatively, the hacker could just call 
the remote RPC service, since its interface uses standard JSON notation. But the call to 
the server which then fetches private information about the artist should check the users 
authorisation to see if they are allowed to view such information. 
 
Figure 2 shows that it is the job of the Spring “Orchestration Service” to check security. 
While Spring provides security using ACEGI modules, a simpler implementation based on 
standard Java EE security was implemented for this demo. There is the maxant Spring 
Security extension available under http://www.maxant.co.uk/tools.jsp which is also 
discussed in detail on the maxant blog 
(http://blog.maxant.co.uk/pebble/2009/06/02/1243967400000.html). Basically, using a 
web filter, every server request is intercepted and the security principal is cached. 
Further along the call stack, a Spring AOP aspect intercepts the call just before it enters 
the service and security annotations on the service method can be read and used to 
check if the cached principal has the required role to call the service method. Once inside 
the orchestration service, security can be checked in more detail because services 
requiring it have the principal passed to them as a parameter. 
 
An example of such a security annotation is shown below: 
 

 
 
Once this is set, there is no need to configure any security constraints in the web.xml for 
the application, because the maxant Spring Security extension automatically checks the 
incoming requests principal, and in the event of insufficient authorisation, it throws a 
security exception. 
 
For GWT to handle this security exception correctly, it is important that the GWT RPC 
Service (in the demo application case see the ApplicationLayerServiceImpl class) is 
extended to handle the security violation in a manner which the client will receive 
notification properly so it can handle it by asking the user to log in with appropriate 
authorisation.  
 
Any RPC service must extend the GWT RemoteServiceServlet. To handle security 
properly, the following method is overridden: 
 

http://www.maxant.co.uk/tools.jsp
http://blog.maxant.co.uk/pebble/2009/06/02/1243967400000.html


White Paper: Enterprise GWT  10/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
 
By sending an error in the HTTP Servlet Response, the GWT RPC framework on the client 
side calls the onFailure() method of the asynchronous callback, where the status code 
can be examined. In the demo application this code is in the ErrorHandler class, which is 
delegated to by the WizardServerCaller and the callback, as described in Figure 6. The 
following code block shows the ErrorHandler doing this. 
 



White Paper: Enterprise GWT  11/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 

 
 
An alternative to this security concept would be to provide security constraints on URL 
mappings in web.xml and providing multiple RPC services, each with their own security 
checks depending on which roles can call them. The following is the GWT annotation 
added to any RPC service: 
 

 
 
In this example it maps to a servlet running under the same URL pattern: 
 

 
 



White Paper: Enterprise GWT  12/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
 
In the above mapping “gwtdemoshop” refers to the GWT module name in which this 
service is mapped. Since the RPC service is running as a servlet, one could add a security 
constraint to that servlet as follows, although this concept was not used in the demo: 
 

 
 
The authors prefer the maxant Spring Security extension because it does not force 
service interfaces to be split up according to the roles which can call them. Security and 
deployment are two separate issues which should not affect one another so strongly. 

BOM vs TO vs PO 
Software architecture has recently been changing in the way that domain objects are 
directly passed to the client. The advantage of such an approach is that business objects 
do not have to be mapped to transfer objects. This is very practical for GWT applications. 
However, the following points need to be considered.  
 
The domain objects and their fields that come over Hibernate from the database are 
sometimes wrapped in a dynamic proxy and are not standard Java classes. For Hibernate 
specific collections, such as org.hibernate.collection.PersistenSet, 
org.hibernate.collection.PersistentList and 
org.hibernate.collection.PersistentBag, but also for the java.sql.Date class no 
GWT emulation exists. As a consequence, these objects have to be unwrapped and 
converted in standard Java classes in order to make them understandable to the GWT 
compiler.  
 
Such a filtering is done using reflection for all fields of a domain object, by applying the 
following code: 
 
    public static Object filterValue(final Object value) throws Exception { 
        if (value == null) { 
            return value; 
        } else if (value instanceof Collection) { 
            return filterCollection((Collection) value); 
        } else if (value instanceof Date) { 
            //casting java.sql.Date or any timestamp to java.util.Date 

//works since they are all subclasses. But the following does 
//look strange... 
return new Date(((Date) value).getTime()); 

        } else if ( 
value.getClass().isPrimitive() ||  
value instanceof String ||  
value instanceof Number ||  
value instanceof Boolean ||  
value instanceof Enum) { 

             



White Paper: Enterprise GWT  13/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

return value; 
        } else { 
            //throw adequate exception 
            throw new Exception(); 
        } 
    } 
 
    private static Collection filterCollection(Collection instance) { 
        if (instance == null) { 
            throw new NullPointerException(); 
        } else if (instance instanceof PersistentSet) { 
            Set<Object> hashSet = new HashSet<Object>(); 
            PersistentSet persSet = (PersistentSet) instance; 
            if (persSet.wasInitialized()) { 
                hashSet.addAll(persSet); 
            } 
            return hashSet; 

  } else if (instance instanceof PersistentList) {  
// do the same 
... 

        } else if (instance instanceof PersistentBag) { 
   // do the same for PersistentBag 
  ... 
        } else if (instance.getClass().getName().contains(CGLIB)) { 
            throw new UnsupportedClassVersionError("To implement"); 
        } else { 
            // plain collection, do not filter 
            return instance; 
        } 
    } 
 
Furthermore, an AOP aspect that invokes filter(Object value) can be put around each 
service call before the domain objects are passed to the client.  
 
This approach is a possible alternative to using TOs. However, in the demo application 
the option of mapping from BOs to TOs has been followed. 

Other Service Considerations 
In the demo, all services are configured using Spring Autowiring. For this to work you 
simply annotate each Service with a name and optional transactional declarations: 
 

 
 
The Spring application context (configuration) can then be configured to load all 
autowired services: 
 

 
 



White Paper: Enterprise GWT  14/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

This step also automatically resolves all dependencies between these services. The 
Orchestration Service is dependent upon the Design Service, and this is configured 
through another Spring annotation: 
 

 
 
This dependency is then automatically injected when the application context is loaded. 
 
This mechanism is great for Spring Services, however the RPC Service which is the entry 
point to a server call is running as a servlet outside of the Spring Context (see Figure 2). 
So a ServiceLocator class was written which caches a reference to the Spring 
Application Context and fetches beans (services) out of it. This was also extended to 
include a DependencyResolver which uses reflection to dynamically inject the target 
class instance with beans from Spring. Figure 10 as well as the code below shows how 
this works. 
 

 

Figure 10: Dependency Resolver and Service Locator 

 



White Paper: Enterprise GWT  15/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
 
The code shown previously for the Design Service and repeated below, has an interesting 
attribute on the transaction annotation, namely the rollbackFor attribute: 
 

 
 
This attribute signals the framework that in the event of such an exception that it should 
also perform a rollback. Normally, Spring only performs a rollback on Runtime 
Exceptions, or if the “setRollbackOnly” method is called on the transaction context. By 
adding this attribute to the annotation, we save ourselves having to tell the transaction 
to rollback explicitly. In the demo application this makes sense too. An 
ApplicationException is thrown in the event that any business logic or technical error 
makes it impossible to successfully complete the server call. We basically want to 
rollback in all such cases, as though the call had never been made. 
 



White Paper: Enterprise GWT  16/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

In special cases where a database entry does indeed need to be kept, this would be 
handled by an inner transaction, which can be started by adding the @Transactional 
annotation to the method, and specifying a Propogation of NEW. 
 
The ApplicationException is something used widely throughout applications written by 
maxant as a means of communicating a unique error code and friendly message to the 
user, while simultaneously causing a rollback of the call to tidy up. The nice thing about it 
is that wherever it is thrown, the unique code provides second level support with a good 
starting point for analysing the problem, since it points to exactly the line of code where 
it occurred. This class also contains a timestamp for when it is instantiated, to further 
assist in finding the problem in the logs. This exception also contains technical details 
which can be logged for technical support, as well as a user friendly exception, which can 
even be enriched further along the call stack. Basically the technical message contains 
details of exactly what went wrong, whereby the user details contain contextual 
information describing which user function failed. Together these two contexts allow 
technical support to see what the user was trying to do, where the error occurred, when 
it occurred and what it exactly was. Recreating the error should then be fairly easy, and 
its resolution should be quick. 
 
The following code block shows the handleException() method of the Orchestration 
Service, which is used to handle all exceptions which get as far as that service. Basically 
it logs the exception as it exits the server (meaning you do not need to log it further 
down the call hierarchy, avoiding it getting logged many times as is typical of enterprise 
applications). This method also ensures that only ApplicationExceptions are thrown. 
 

 
 
The code block below shows a typical method in the orchestration service which catches 
all exceptions and ensures they are handled with a unique error code (ORCH002 in this 
example). 
 



White Paper: Enterprise GWT  17/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
 
As all exceptions which come back to the client are ApplicationExceptions, it can 
easily display them in a generic fashion, showing the error code, timestamp and user 
friendly details. An error handler can handle the exceptions serverside before they exit 
and log or email them to support, allowing a proactive handling of problems. 
 
Another important aspect of the Orchestration Service is that it maps Transfer Objects 
(TOs) to Persistence Objects (POs). In a larger application it may well be worth also 
having a Business Object Model (BOM) between the TOs and POs which the business 
services use. The mappings in the demo application were partially done using reflection 
as all POs and TOs are essentially standard Java Beans with standard accessor methods 
(setX() / getX()) (see section on BOM vs TO). The mapping could not be completely 
done automatically, because for example GWT does not know the 
java.math.BigDecimal, and double had to be used instead (although a GWT emulation 
for BigDecimal can be found at http://code.google.com/p/gwt-math/). However, the 
Orchestration Serivce extends the Mapper class so that it can quickly map as required. 
Because designs and artists do not necessarily have an image associated with them (at 
least not until they are approved), the Orchestration Service overrides the relevant 
mapping and sets the imageExists field of the TO, so that the client doesn’t try to load a 
non-existent image and can show a generic image instead. 

File Upload in a Form 
One area of GWT which leads to confusion is file uploads. File uploads are not handled 
over RPC but rather in the traditional sense whereby a servlet is called and the request 
contains Mime entries for the uploaded data. If however the page which the user is filling 
out need to contain other information which should also be uploaded, there are two ways 
to handle it. 
 
As an example, take the dialog which an artist uses to upload a new design, shown in 
Figure 11. 
 

http://code.google.com/p/gwt-math/


White Paper: Enterprise GWT  18/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 

Figure 11: Submitting a New Design 

 
This screen allows the user to enter details about the design, as well as an image file. 
 
GWT File uploads occur by adding a FormPanel, which results in calling a servlet, but not 
an RPC service. On the other hand, if the file upload were not part of this screen, hitting 
the OK button would result in a simple RPC call using a transfer object to hold the input 
data. 
 
So that the user does not need to submit the data first, and then click again to submit 
their image, there are two solutions. Firstly when the user hits the OK button, the data 
could be collected from the screen and set into the GWT FormPanel as Hidden objects, 
which are then submitted with the form, in order to load the file and create the database 
record at the same time. The problem with this is that the servlet needs to then locate 
the service in order to create a design record in the database and then save the uploaded 
file. 
 
The alternative is that a normal RPC call is made with all the data except the file, and 
when that returns, a second call to the file upload servlet is made. This is the approach 
used in the demo, but it has several noteworthy points. The FormPanel on which the 
submit() method is called may not be disposed before it is called (ie. before the RPC call 
which creates the database record returns), meaning that the dialog which contains it 
may not be closed until after it is submitted. This process is also more complex, because 
you need to maintain a reference to the FormPanel in a place which the asynchronous 
callback from the RPC call can access it to call submit() on it. 
 
Using the ServiceLocator described in Figure 10, it would have been simpler to take 
the information that the user input and set it on Hidden fields in the FormPanel and 
simply submit that. Serverside, the servlet could have used the ServiceLocator to find 
the required service and call it. 
 



White Paper: Enterprise GWT  19/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

For serverside file upload, the Apache Commons FileUpload library was used. 

Composite Widgets and a UI Factory 
User Interface widgets in the demo application are instantiated using the UIFactory 
class, whose primary role is to ensure that all widgets have the correct CSS styles 
applied to them. This way, it is possible to easily change the style applied to say all 
buttons in the application, because their style name is defined centrally. 
 
GWT provides a number of very useful standard widgets for building the user interface. 
However a number of other useful widgets are missing. Many common widgets not found 
in GWT are provided by third-party libraries, such as Smart GWT, GWT-Ext or Ext GWT. 
Smart GWT is based on the SmartClient Javascript library, where the other two use the 
Ext-JS Javascript library. Unfortunately, the licence for Ext-JS has been recently 
restricted from LGPL to GPL with the consequence that GWT-Ext is no longer under active 
development. Thus, it is recommended to use Smart GWT. It is not only available under 
LGPL but is also currently being rapidly evolved and is well supported. Of course it is 
possible to forego any GWT extension libraries since GWT allows a programmer to quite 
simply create their own new widgets by plugging standard ones together by extending 
the Composite class.  
 
One such composite widget has already been shown in Figure 11, namely for tag input. 
Tags are simple key words which are associated with a design, so that when the user 
searches for a design, they are more likely to find what they are looking for. To capture a 
list of such tags, the TagListBox composite widget was created, as shown in Figure 12.  
 

 
 

 
 
 

 
 
 

 
 

Figure 12: TagListBox 

The TagListBox is based on a ListBox with two clickable HTML widgets for adding and 
removing items from the list box. To add an item, an input dialog (see below) is opened 
to prompt the user for the input. The items can be read from the widget by calling the 
getContents() method. Alternatively, to set the contents, the corresponding setter 
method can be called. 

HTML Widgets, 
including ClickHandlers 

A ListBox 
Widget 



White Paper: Enterprise GWT  20/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
A “rater” widget for rating designs was also built: 
 

 
 
 
 

 
 

Figure 13: Rater 

The Rater widget is read only until a user logs in. Once logged in, it will highlight the 
image over which the mouse hovers. If you click on a star, then that rating is set in the 
widgets internal model, and a callback is notified, so that the client can react to the 
event, for example by calling a remote service to save the rating to the database. 
 
Standard dialogs for showing errors, warnings or information, as well as prompting 
questions or for input are not provided by standard GWT. A small dialog framework was 
built for the demo application: 
 
 

 
 
 
 

Images in a 
HorizontalPanel, 

including ClickHandlers 

Image 

Button 

HTML 



White Paper: Enterprise GWT  21/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
 

Figure 14: Dialogs 

Dialogs all extend the Dialog class that was written as part of the demo application. The 
GWT DialogBox can be modal, but it does not block code execution from the moment it 
is visible until it is closed. For this reason call-backs were added so that code execution 
could be continued once the user interacted. Each subclass simply supplies the relevant 
image from an ImageBundle. All other implementation is in the Dialog super class. 
Since the QuestionDialog has two buttons (“yes” and “no”), its implementation is a 
little larger as it replaces the single “OK” button of the super class. Additionally, the 
QuestionDialog needs to pass its state to the callback so the client knows which button 
was pushed, so it has a different callback interface. 
 
In all cases the center() method of the DialogBox, which opens the dialog in the center 
of the screen, is overridden so that it first sets focus on the default button. 
 
Although not a widget as such, the “tag cloud” (http://en.wikipedia.org/wiki/Tag_cloud) 
which shows most viewed artists on the front page, is worth noting.  
 
 
 
 
 

 
 
The tag cloud is created by showing links to the shop (which show the artist and all their 
designs) in a FlexTable. The links are created by retrieving a list of artists views, ie. 
which artists have been viewed the most. If for example the artists were listed in order of 
most views as follows, then their position in the table indicates the font size and weight 
used to create the link: 
 

This artist is 
displayed in a 
smaller font because 
they have fewer 
views. 

http://en.wikipedia.org/wiki/Tag_cloud


White Paper: Enterprise GWT  22/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

Artist Number of Views Font 
Ed Nortson 455 Size 16, Weight 100 
John McLean 450 Size 14, Weight 85 
Fred McIntyre 360 Size 12, Weight 70 
Jason Stove 325 Size 10, Weight 55 
Jennifer Stoats 227 Size 8, Weight 40 

 
The links are arranged either randomly, or in a spiral with the highest weighted artist 
shown in the center of the table. 
 
The final composite widget described here is the filter box. A filter box can filter the 
contents of a table (locally in the client) or pass the filter to a server call so that the 
content returned from the server is filtered. 
 
 
 

 
 
 

 

 

Figure 15: FilterBox 

The FilterBox composite widget is by far the most complex of those created for the 
demo application. In fact there are two types. The first filters data in say a table. As text 
is entered into its input box, it calls the doFilter() method. This in turn calls the 

Button 

HTML Button 

TextBox 

HTML 



White Paper: Enterprise GWT  23/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

getFilterables() method which returns a list of FilterableUIObjects. These objects 
contain a reference to a UIObject and a method for getting relevant strings – meta-data 
to be compared to the filter input, which can be a regular expression. Any matching 
strings mean that the UIObject is set visible. Any non-matching strings, means that the 
related UIObject is set not visible. The DHTML engine then takes care of hiding the 
required widgets. 
 
The second type of filter is an asynchronous one which sends the filter text to the server. 
It does this automatically, but only after the input text has changed, and remains 
unchanged for 500 milliseconds. It waits for this small period because otherwise the 
server would be flooded with every single input change (ie. every typed letter), most of 
which does not interest the user – they want to filter based on an entire word or phrase. 
It also reacts to the user hitting return, in which case it sends the request to the server 
immediately. The server call is typically done as usual, over the controller, from the 
Filter which is contained in the Page. Importantly, there is a method here called 
serverCallComplete() which the page calls during its refresh at the end, passing it the 
number of results so that the filter can display it in its right-hand HTML widget. 

Jcaptcha and GWT 
Jcaptcha is a Java implementation of captcha technology 
(http://jcaptcha.sourceforge.net/). This technology helps to guarantee that the inputs 
are coming from a human source as opposed to a robot. An example is shown below, 
from the “register” page of the demo application: 
 

 
 
Upon registering, the client calls the jcaptcha servlet which returns an image and sets 
its text in the server-side session. When the user hits the register button, the data is 
sent to the Application Layer Service (the GWT RPC remote service) which checks the 
provided text against that stored in the session.  
 

 
 
The CaptchaServiceSingleton is simply a class which generates captcha images. 
Jcaptcha only allows each image to be checked once. That means that if the captcha text 

http://jcaptcha.sourceforge.net/


White Paper: Enterprise GWT  24/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

is entered correctly, but the user gets a validation error because they have for example 
entered an alias (screen name) which already exists in the database, the captcha image 
will need to be regenerated and they will need to re-enter the text for the new image. 
This causes somewhat unfortunate experience for the user, so as much validation needs 
to be carried out client side as possible. Alternatively, the captcha check could be done as 
the very last part of the process, although it would need to result in a rollback. Since the 
code above is outside of the Spring services (it’s the RPC service), its too late to do a 
callback, so in the demo  application, the captcha check is the very first thing done in this 
process. 

Multiple GWT Modules in a Single Application 
GWT allows multiple modules to be created. Reasons to do so are to: 
 

 create a super module consisting of many smaller logical parts which may 
eventually also be re-used, 

 create a module containing only those parts which the application requires (see 
below), 

 create a page containing multiple small widgets, each being its own module. 
 
Towards the start of this paper, it was discussed that the application was split into two 
modules, namely an admin module and a shop module. The motivation for doing this was 
to reduce the size of the shop application, making the startup experience for users 
quicker. Together, with the modules as one module, the generated JavaScript and HTML 
resulted in a download of over 500 kilobytes. Once split, the shop modules generated 
code was only just over 300 kilobytes. 
 
To split the application into two modules the AppWizard was split into the ShopWizard 
and an AdminWizard. Each contains different pages, and if a page is to be activated 
which it does not contain, it makes a call to the other module by loading the other 
modules JSP. The JSP contains a reference to the module it should load: 
 

 
 
The module itself is defined in the GWTDemoShop.gwt.xml file, where it is renamed to 
simply “gwtdemoshop”. The entry point is also defined there, as the Java class containing 
the onModuleLoad() method. 
 

 
. 
. 
. 

 
 
One important aspect of splitting a module into smaller parts is that if two modules call 
the same RPC service, that service’s servlet mapping needs to be defined twice in the 
web.xml deployment descriptor: 
 

 
 



White Paper: Enterprise GWT  25/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
 
Note that the composite widgets which have been discussed above could also be turned 
into their own mini-modules and be published as libraries. 
 
As suggested at the start of this section, there is also a motivation for using a multiple 
module architecture, to split the project into several logical subprojects, e.g. one 
containing the model, one for the business logic, one for the services and one for the 
client parts. This is quite a usual approach in a Java EE application because subprojects 
are decoupled, logical and easier to maintain. Such an architecture is very rarely seen in 
GWT demo applications, tutorials or examples in the internet. What can be done here, is 
to make each subproject which provides GWT specific parts, such as the RPC service 
interfaces or eventually the domain objects, a separate GWT module (usually without an 
entry point). The main module containing the entry point then references the sub-
modules. Although this works pretty well, one workaround has to be considered to be 
able to debug the code of all subprojects: the sources output directories of the 
subprojects have to be set to the client’s war projects output directory. 

Google Analytics Integration 
To include Google Analytics (http://www.google.com/analytics) so that page flow and 
usage reports can be very easily generated, a couple of things need to be done. Firstly 
you need to generate an analytics key using the Google site. Once you have this key, it 
can be added to some standard JavaScript which you can add to the index JSP page. 
 

 
 
In the demo application this JavaScript is stored in header.jsp which is a common file 
to all JSP pages. 
 
Notice that it defines a variable called pageTracker in the DHTML document. GWT can 
access this using the following code, contained in the JSUtil class: 
 

http://www.google.com/analytics


White Paper: Enterprise GWT  26/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
 
When the JSP page is loaded, it adds a hit for that page to Google analytics. When the 
trackPageView(String) method above is called, it adds a hit for the given page name. 
This means that although all pages of the Wizard are contained within the index.jsp 
page, you can still tell Google Analytics that a specific page has been viewed. The 
method shown above basically calls native JavaScript which takes the pageTracker 
variable which is set using the JavaScript shown above, and calls it with the pageName 
parameter. 
 
This method gets called by the wizard, every time a new page is activated, at the same 
time as the history token is added to the browser (see previously). 

Deployment for Development and Testing 
An important aspect to developing for the Enterprise is being able to test against a server 
running against a database. To do this, the Apache Tomcat server was used. The Eclipse 
project contains a “war” directory which is the web applications content directory. As 
such, the Tomcat server configuration is as follows: 
 

 



White Paper: Enterprise GWT  27/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
 
To ensure that the browser can find “gwtdemomaxantcouk” edit the host configuration 
(in Windows this is found under c:\windows\system32\drivers\etc\hosts). This 
configuration contains a database resource mapped into the JNDI tree under jdbc/db 
and a security realm which uses the Party and Role database tables. An email resource 
is also configured. 
 
Please note that while Tomcat at least provides a server environment to test against, it is 
not necessarily Enterprise compliant in that for example the default transaction manager 
is not XA compliant. However testing against a server is important since it ensures that 
objects are serialised between the server and client, as they would be in production. This 
is important to continually test and it is recommended to develop this way. 
 
To load the GWT modules in the GWT framework’s hosted mode browser (relevant only 
to pre GWT 2.0 projects), a launch configuration for Eclipse is provided for each GWT 
module. These launch configurations contain the following information: 
 
Main Class: com.google.gwt.dev.HostedMode 
Program Arguments: -logLevel SPAM 

-noserver 
-whitelist ".*gwtdemomaxantcouk.*" 
-startupUrl http://gwtdemomaxantcouk:8089/ 
uk.co.maxant.gwtdemo.GWTDemoShop 

 
The logLevel is set higher than normal to help with problems. For example if a transfer 
object does not contain a default constructor the error message logged to the hosted 
mode browser console is not detailed enough to tell you what is wrong. Turning logging 
up to the SPAM level ensures these details are output. 
 
The noserver option tells GWT that you have your own server and that it should not 
start one for you. Your own server is the very instance of Tomcat configured above. 
 
The whitelist option tells the hosted mode browser to not complain that you are 
testing against a domain other than localhost. 
 
The startupUrl option tells the browser where to find the site. 
 

http://gwtdemomaxantcouk:8089/


White Paper: Enterprise GWT  28/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

The last option is the name of the GWT module file including its package path, excluding 
the file name extension “.gwt.xml”. 
 
GWT 2.0 introduces browser specific plugins so that the browser itself interprets the Java 
code during development time, and so no launch configuration is needed. 
 
The Eclipse Projects folder content is described below: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

source folder 
test folder 

POs generated by Hibernate Tools 

SQL for creating tables and inserting data 

libraries for PO generation 

web root (see later) 
template for hibernate generation 

Ant script for Hibernate generation 

Eclipse Launch Configurations 

Reverse engineering configuration for 
Hibernate generation 



White Paper: Enterprise GWT  29/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
 
 

 
 

Database 
The database schemas were as follows. 

Contains a JSP for uploading artists images. This 
folder is also mapped to a security constraint so that 
only artists or admin can use it. 

GWT generates the shop module here 

Contains original designs once uploaded by admin 
Contains all images, except those contained in the 
ImageBundle, which helps reduce the number of downloads 
Contains JSPs which mock PayPal 

Generic JavaScript for non-GWT pages 

File Upload JSPs 

Contains tools for super administrators, eg 
reloading caches etc. 
Contains Server-side classes, Hibernate and Spring 
configurations, libraries etc. 

Forces login 

CSS files for GWT as well as normal JSPs 



White Paper: Enterprise GWT  30/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 

Figure 16: Database Schema 

 
The party table represents users (customers, artists and staff). The artist_view table 
contains the number of times each artists profile has been viewed. This information is 
used to populate the “cloud” on the home page. The role table contains the roles of 
each user, as used by the Tomcat Security Realm. The design table contains data about 
each design that is shown on the site. The design_comment table contains customer / 
artist comments about designs. The design_rating contains information about which 
users have rated which designs, since users may only rate each design once. The config 
table contains the sites configuration, for example email addresses and PayPal 
configuration. The design_tag table contains the tags associated with designs, which 
are used when searching for designs. The front_page_design table contains a list of 
designs which should be shown on the front page because for example they are top 
sellers. The sales_order table contains an entry for each sales order, sold to a customer 
and the sales_order_item table contains an entry for each design contained in a sales 
order. 

Migration from GWT 1.7 to 2.0 
Migration to GWT 2.0 from a previous release is quite easy as it is mostly backward-
compatible. The major new features are rather recommendations than obligations. One 
point to consider is that with the new development mode the URL to the application is 
expanded by the parameter gwt.codesvr=localhost:9997. This parameter lets the 
browser's developer plugin know that the development mode is on. You have to be 
careful if there is an HTML redirection in your application. In this case, the gwt.codesvr 
parameter is removed and the application is not launched in the development mode but 
in the compiled mode. In order to make use of the development mode one should always 
append the gwt.codesvr parameter to the redirected URL. 
 



White Paper: Enterprise GWT  31/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

Example: 
 
The development mode url provided by GWT: 
 
http://localhost:4671/index.html?gwt.codesvr=localhost:9997 
 
is redirected to: 
 
http://localhost:4671/web/redirected.html (Compiled mode) 
 
add gwt.codesvr=localhost:9997 again: 
 
http://localhost:4671/web/redirected.html?gwt.codesvr=localhost:9997 
(Development mode) 

Building the application using Maven 
If you are building your application with Maven there is the gwt-maven-plugin that 
compiles the GWT-specific stuff. An example build configuration in the pom.xml looks as 
follows: 
 
    <build> 
        <outputDirectory>war/WEB-INF/classes</outputDirectory> 
        <plugins> 
            <plugin> 
                <groupId>org.codehaus.mojo</groupId> 
                <artifactId>gwt-maven-plugin</artifactId> 
                <version>1.2</version> 
                <executions> 
                    <execution> 
                        <goals> 
                            <goal>compile</goal> 
                        </goals> 
                    </execution> 
                </executions> 
                <configuration> 
                    <output>${basedir}/war</output> 
                    <runTarget>${basedir}/war/index.html</runTarget> 
                    <webXml>${basedir}/war/WEB-INF/web.xml</webXml> 
                    <hostedWebapp>${basedir}/war</hostedWebapp> 
                </configuration> 
            </plugin> 
        </plugins> 
    </build> 

GWT Maturity and its Future 
Is GWT ready for the Enterprise? In the authors experience it certainly is. The very 
essence of being able to write once and deploy successfully to every browser is perfect 
for Enterprise development. With the 1.7 release of GWT and deployment to the war 
folder so that the pre-build environment resembles deployment to production, GWT has 
reached a level of maturity acceptable for Enterprise development. 
 
An area where GWT is lacking is the amount of widgets it provides. Unfortunately it 
currently only contains the basics (see 
http://gwt.google.com/samples/Showcase/Showcase.html). Users of modern web sites 
expect a very rich experience with sexy widgets, none of which are available with the 
default GWT download. There are extensions available, but the maturity of those should 
be investigated separately on a case by case basis. 

http://localhost:4671/index.html?gwt.codesvr=localhost:9997
http://localhost:4671/web/redirected.html
http://localhost:4671/web/redirected.html?gwt.codesvr=localhost:9997
http://gwt.google.com/samples/Showcase/Showcase.html


White Paper: Enterprise GWT  32/32 
Dr Ant Kutschera, Barbara Spillmann 
© 2010   

 
One area where GWT needs to improve is the development mode performance. With 
GWT 2.0 the hosted mode browser for developing and debugging has become redundant. 
Development mode is now supported through the use of a native-code plugin called the 
Google Web Toolkit Developer Plugin. It exists for many popular browsers and the 
development mode can be used in the preferred browser. With this change 
improvements in the performance could be reached, but is still comparatively slow, which 
can be very frustrating… 
 
With GWT 2.0, released in December 2009, the old style (1.7 and earlier) all-java 
paradigm was split into a declarative paradigm whereby widget position/presentation on 
a page are configured via XML and only the logic (handlers, controllers, models, etc.) 
remain in Java. While this is a welcome development it does mean that anything 
developed with an older version will likely have to be re-written to keep up to date. A 
host of other widgets which are currently in the incubator stage should also become 
available as part of core GWT. 

References 
Apache Tomcat http://tomcat.apache.org/ 
Eclipse http://www.eclipse.org  
Google Web Toolkit http://code.google.com/webtoolkit/ 
Hibernate http://www.hibernate.org  
maxant http://www.maxant.co.uk  
maxant Blog http://blog.maxant.co.uk  
MySQL http://www.mysql.com  
Smart GWT http://code.google.com/p/smartgwt  
Spring http://www.springframework.org  
Tag Cloud http://en.wikipedia.org/wiki/Tag_cloud 

Download 
The demo application is live at http://gwtdemo.maxant.co.uk and available for download 
at http://www.maxant.co.uk/whitepapers.jsp 
 
For any questions regarding the example, the platform or indeed anything mentioned in 
this paper, maxant is available to provide consulting services. Our contact details are 
below and on http://www.maxant.co.uk. 

About the Authors 
Dr Ant Kutschera has been working in IT since 2000, implementing software in the 
enterprise, in all aspects of the software life cycle, including but not limited to 
requirements gathering, architecture, design, programming, testing, delivery, support 
and maintenance. He currently works for various clients as an independent consultant, 
specialising in software architecture, Java EE, Rich Clients and SOA. He can be contacted 
through: 

  
 
Barbara Spillmann is software engineer at Swiss Federal Railways, SBB AG. In addition to 
GWT, she has worked on several enterprise applications based on JEE, JPA, Eclipse RCP, 
and Spring MVC. She has an MSc in Computer Science from the University of Berne 
where she wrote her master's thesis in the field of structural and statistical pattern 
recognition. She can be contacted through: 

 

 

http://tomcat.apache.org/
http://www.eclipse.org
http://code.google.com/webtoolkit/
http://www.hibernate.org
http://www.maxant.co.uk
http://blog.maxant.co.uk
http://www.mysql.com
http://code.google.com/p/smartgwt
http://www.springframework.org
http://en.wikipedia.org/wiki/Tag_cloud
http://gwtdemo.maxant.co.uk
http://www.maxant.co.uk/whitepapers.jsp
http://www.maxant.co.uk

