
DCI in 1585 words.
Most articles about DCI are long, somewhat complicated and often philosophical. It
didn’t take me very long at all to grasp the concepts behind object oriented programming
(OOP), when I read about it. And it shouldn’t take long to grasp the concepts behind DCI
either. So instead of wasting words, let’s get on…

Two of the most important things about creating a computer program are a) the data and
b) the algorithms. With procedural programming, data cannot be programmed
particularly well (no abstraction, no inheritance, sometimes even poor support for data
structures), but algorithms can be programmed fine. With OOP, it’s the other way
around, it’s great for programming all kinds of real world data structures, but it isn’t so
great for programming algorithms, because the algorithms described in use cases, tend
to get fragmented into lots of classes, because behaviour is kept close to its data (i.e.
“coherence”). The relationship between algorithms and use-cases gets lost quite easily.
It doesn’t have to, you are free to program procedurally in most modern OO languages,
but if you do OOP the way it was intended, fragmentation happens. OOP also suffers
when people over-engineer the inheritance trees. It doesn’t have to, but it depends upon
how good the designer is. The complex Bridge Pattern from the Gang of Four was
created to help reduce inheritance.

The fragmentation can be bad for two reasons. Firstly, it can make reviewing use-cases
hard. Either you give the reviewer a set of entire classes, including a bunch of stuff
unrelated to what they want to review – or you spend time cutting and pasting methods
and data out of source code into some kind of document to give to the reviewer, and
they end up with parts of more complex classes and they end up confused, and you
spend way too long creating that useless document. Both ways makes reviewing hard.
If reviewing cannot be relied on for catching bugs or other problems, then only testing
can be, and testing is expensive. And most people are lazy and don’t like testing. The
second reason fragmentation can be bad is that it’s basically the same as mixing up
algorithms and data. And that can be bad, because, especially in the agile world,
algorithms change faster than data. It’s quite easy to capture an entire data model from
the requirements and to program it up. It doesn’t often change much, it may get
extended. But capturing the functionality (algorithms) is hard, and they are guaranteed
to change, as the requirements grow from iteration to iteration or as scope creep occurs.
And because we love our friends who create the requirements (they give us money to
program1), we hate telling them that they can’t have functionality which they need,
because adding it would break our well designed software. So we hack around and add
functionality, and our code starts to rot. Alternatively, we refactor, and that costs a lot.
If we could split the data from the algorithms, our code might rot much slower.

Services (ala Service Oriented Architecture) have been around for a decade, and do this
splitting really well. But SOA struggles to be similar to what the user has in his head
when creating requirements – when was the last time you read a requirements document
or user story with the word “service” in it? The problem is that service design does not
dictate a close mapping to the use-cases. So there is a mapping between the user’s
mental model and the software (the programmer’s mental model). And that can be bad,
because anyone reviewing the code has to understand the mapping. And anyone picking
up the source code after a few years has to understand the mapping. And that mapping
is either undocumented, or in a design document, which not actually necessary, because
the mapping itself is not necessary. That design document also gets forgotten when we
start adding functionality, or when another programmer starts adding code. And it gets
worse. If during analysis, you use CRC cards or similar techniques, you end up with two
mappings – one from the user’s mental model to the CRC cards (OO world), and a

1 If only they knew that wasn’t necessary, we love programming! But don’t tell them
that.
DCI in 1585 words. 1/6

© 2010 Dr Ant Kutschera, Dr Andreas Schlapbach
www.maxant.co.uk

second, from CRC cards to services! In this respect, OOP is better, because you only
need one unnecessary mapping.

So some clever people living in Scandinavia, using their own ideas and some others from
around the world, created something called DCI. It stands for Data, Context, and
Interaction. And it takes separating data from algorithms a few steps further, by using
the idea of roles. It goes like this: data objects (aka “D”) require different functionality,
depending upon the context (aka “C”) in which they are used. Within a given context,
they interact (aka “I”) with other objects. Instead of letting complicated objects interact
with other complicated objects, objects are assigned roles, to make them less
complicated. The roles also provide the objects with the algorithms they need to be
functional in that context. The context (which starts the interaction), or indeed other
objects within an interaction, only know about objects in their particular role – that is,
they have a smaller (narrowed) interface when compared to them being plain data
objects. They only expose the things important to the role they are playing, as well as
the new functionality which is part of the role. So, all these words and no pictures?! 895
so far, so we are more than half way! In the following picture, start at the MVC
controller in the upper left.

And here’s another picture:

DCI in 1585 words. 2/6
© 2010 Dr Ant Kutschera, Dr Andreas Schlapbach

www.maxant.co.uk

Those two pictures had some interesting words on them: “inject”, “role name” and “role
method”.

In order to have algorithms, one needs to code them somewhere, and we said above,
that this wouldn’t be in the data classes (that’s what OOP does). So we code the
algorithms in “role methods”, i.e. methods in stateless classes, or if your language of
choice supports them, “traits”.

Above, I said that complicated objects need to be made simpler… that’s where “role
names” come in. These are a definition of methods which the object will expose while
playing the role.

So, that leaves the word “inject”. This word is about providing the functionality to the
object so that it can play the role. It’s controversial, because how do you inject
algorithms into data objects, using main stream languages? Well, if your language of
choice doesn’t let you do it, you can pretend it does, using things like dynamic proxies,
or just the proxy pattern, or other mechanisms like composites. You have to be careful
to avoid “object schizophrenia”, because in pure DCI, an object assuming a role is the
data object, not a new one, and if you hack this by using a proxy, the object exposing
the role methods is not the data object. But the important point is that anyone reading
the code reads it so that they are telling the same story which the use case tells. All
these words (1162 so far, three quarters done) and some pictures, and now you want to
see some code? OK. Imagine a design with some Model-View-Controller in it, and the
user does something to cause the controller to get called by an event. That controller
creates a context in order to do something useful, rather than do something useful itself.
That context is responsible for firstly casting objects into relevant roles, and secondly for
running the interaction. Role methods are the inner workings of the context and the
context may also contain algorithms which hare not directly the responsibility of roles.
OK, OK! Here’s the code:

DCI in 1585 words. 3/6
© 2010 Dr Ant Kutschera, Dr Andreas Schlapbach

www.maxant.co.uk

Prefer that in Java, rather than Scala? OK, but be warned, it is not pure DCI2.

The last bit is then to look at what happens inside the role method called “withdraw”:

2 See http://www.maxant.co.uk/tools.jsp for details of the BehaviourInjector class
which creates a dynamic proxy.
DCI in 1585 words. 4/6

© 2010 Dr Ant Kutschera, Dr Andreas Schlapbach
www.maxant.co.uk

http://www.maxant.co.uk/tools.jsp

Hey, what’s “self”, in the code self.decreaseBalance(amount)?? Self, is the object,
currently playing the role being executed. It’s a bit like “this”, but “this” would refer to
the instance of the class implementing the role methods. Where does it come from? In
Java, in this given implementation of DCI, it’s injected at the time when the data object
is cast into the role:

You might not agree with the code, i.e. what it does. But this is an introduction to DCI,
not a discussion about what the use case is, how it should be defined, or how it should be
coded. The important point is that you see how to implement DCI, and to understand
what its benefits and disadvantages are.

See how this code is reviewable, compared to OOP? See how reading the code sounds
identical to the use-case?3

3 The actual use case has not been printed here, because this is a succinct article, but if
you read the code, and write it out, that would be the same as the use-case .
Code and actual use case are downloadable from www.maxant.co.uk/whitepapers.jsp
DCI in 1585 words. 5/6

© 2010 Dr Ant Kutschera, Dr Andreas Schlapbach
www.maxant.co.uk

http://www.maxant.co.uk/whitepapers.jsp

Let me close with pretty bullet points.

So, hopefully you now know what DCI is about. DCI is not a one-size-fits-all solution and
it is not suited to every application. But if you value reviewable code, and want code to
map directly to use-cases, DCI empowers you to do that. DCI does not need to be used
everywhere in your code either, it can be used to solve local problems. Even if you don’t
use DCI, DCI formalises a few important things:

• Separating System Behaviour from Data is a good thing,
• System Behaviour is first class, just like Data,
• System Behaviour should be use-case-centric, rather than class- or service-

centric,
• Reviewing code is better than just testing it,
• Reviewing code can be easier, if the data objects involved have a narrowed

interface.

For more information, check any of these useful links:
http://en.wikipedia.org/wiki/Data,_Context,_and_Interaction http://scg.unibe.ch/archive/phd/schaerli-phd.pdf
http://www.artima.com/articles/dci_vision.html http://vimeo.com/8235394
http://heim.ifi.uio.no/~trygver/2010/DCIExecutionModel.pdf http://vimeo.com/8235574
http://architects.dzone.com/videos/dci-architecture-oberg http://www.maxant.co.uk/whitepapers.jsp
http://heim.ifi.uio.no/~trygver/2009/commonsense.pdf http://groups.google.com/group/object-composition

DCI in 1585 words. 6/6
© 2010 Dr Ant Kutschera, Dr Andreas Schlapbach

www.maxant.co.uk

DCI is a paradigm used in computer software to program systems of communicating objects.
Its goals are:
To improve the readability of object-oriented code by giving system behavior first-
 class status;
To cleanly separate code for rapidly changing system behavior (what the system
 does) from that for slowly changing domain knowledge (what the system is),
 instead of combining both in one class interface;
To help programmers reason about system-level state and behavior instead of
 only object state and behavior;
To support an object style of thinking that is close to peoples' mental models,
 rather than the class style of thinking that overshadowed object thinking early in
 the history of object-oriented programming languages.

DCI…
...reduces the size of the inheritance tree of the domain model, when compared to
 OOP;
...makes reading the code sound more like the users mental model, when
 compared to a services solution;
...can be combined with frameworks or application servers which consider cross-
 cutting concerns like transactions and security, as well as other concerns like
 resource management, concurrency, scalability, robustness and reliability – it is
 the context which the container knows deals with.

DCI makes reviewing / reading / understanding code easier by...
...formally separating the Domain Model (what-the-system-is) from System
 Behaviour (what-the-system-does);
...narrowing each object involved in an interaction so that anyone reading the code
 only need to know about that narrowed interface;
...formally relating implementation directly to use-cases;
...relating unit tests, directly to use-cases because when unit tests are
 written for roles, they automatically test use-cases, rather than unit
 testing random parts of use-cases;
...making it very clear where you need to invest your testing effort, i.e. unit
 test the roles.

	DCI in 1585 words.

