
DCI Design Idea1: The Specialised Role
Sometimes a DCI Role is defined, which may need to be specialised. Every specific
implementation has the same interface (the same role methods), so they can be
considered the same role, just with different implementation details. The choice of
specific role is made by the context during the assembly of data and assignment of roles.
It is usually based upon attributes of the data. In such cases, the specialised role can be
useful. In this design idea, the context deals with an abstract role, but knows how to
specialise it, based on the data which needs to play the role.

Figure 1: The Specialised Role

The AbstractRole does not need to be abstract; it can indeed also be a default
implementation, which can be overridden as and when required.

This design idea could be implemented using individual Roles for each kind of
specialisation, but doing so would mean that there is no place to put common code. This
is an example where traditional object oriented inheritance is good. In cases where this
design idea can be used, the role interface is identical between the specific roles; it is
just the implementation which differs. Consider a waiter who is capable of serving drinks
in the role of a drinks waiter. At times he will be in the role of the wine waiter (a type of
drinks waiter), at other times, in the role of a soft drink waiter (also a type of drinks
waiter). Different glasses and protocols are used for pouring different drinks and this
specialisation is contained within the serveDrinks() method of the abstract role.

Example
An example2 might be in an ordering system where an order takes on a role during order
fulfilment, so that it can apply the relevant VAT / Sales Tax. In many countries, the
amount of VAT to apply to each order item depends upon the item type. For example,
luxury items may have a higher tax rate, or special items such as books, may be subject
to less tax.

1 To avoid the confusion between “Design Patterns” as defined by the Gang of Four and
“Generative Patterns”, the term “Design Idea” will be used.
2 The idea for the example used here came from Petter Mahlen:
http://pettermahlen.com/2010/10/02/dci-better-with-di/. See also
http://groups.google.com/group/object-
composition/browse_thread/thread/90e63ab085a602e6/f371b755a98ecb2a?
lnk=gst&q=pattern#f371b755a98ecb2a
DCI Design Idea: The Specialised Role 1/5

© 2010 Dr Ant Kutschera, www.maxant.co.uk

http://groups.google.com/group/object-composition/browse_thread/thread/90e63ab085a602e6/f371b755a98ecb2a?lnk=gst&q=pattern#f371b755a98ecb2a
http://groups.google.com/group/object-composition/browse_thread/thread/90e63ab085a602e6/f371b755a98ecb2a?lnk=gst&q=pattern#f371b755a98ecb2a
http://groups.google.com/group/object-composition/browse_thread/thread/90e63ab085a602e6/f371b755a98ecb2a?lnk=gst&q=pattern#f371b755a98ecb2a
http://pettermahlen.com/2010/10/02/dci-better-with-di/

The role in this case would have the name “Taxable”, that is, have the ability to add VAT
to itself. To be able to do this, it would be able to determine the types of items it
contains, and then add the relevant VAT to itself for each item type, with a user friendly
description of its type.

This role can be represented abstractly, and specialised for each specific VAT rule
needed. The UML would then look like this:

Figure 2: Example of The Specialised Role

In such a context, the data object being used to play the Taxable role, would be an Order
object. This order object needs to be able to provide the addVat() role-method (in the
Taxable Role) details about how much of the order is related to each VAT type it cares
about. It does this via the self.getSubTotal(OrderItemType) method. The specific
Taxable implementation applies the relevant tax for each item type, and adds it back to
the order, using the self.addTax(double, String) method from the domain model, so
that the order knows how to break down the VAT that has been applied, for example to
print it on a receipt.

DCI Design Idea: The Specialised Role 2/5
© 2010 Dr Ant Kutschera, www.maxant.co.uk

Figure 3: Sequence Diagram for The Specialised Role

Java Implementation
See http://www.maxant.co.uk/tools.jsp for details about the BehaviourInjector class
used in the example below.

A Java implementation of this example could look as follows.

Listing 1: Java example of the Order Fulfilment Context

DCI Design Idea: The Specialised Role 3/5
© 2010 Dr Ant Kutschera, www.maxant.co.uk

http://www.maxant.co.uk/tools.jsp

Listing 2: Java example of the Order Fulfilment Context, showing selection of
the specific role, based on information from the data object.

Listing 3: The abstract role.

Listing 4: The (Java specific) interface of the object playing this role3.

3 See the BehaviourInjector documentation for more information about this Java
specific interface.
DCI Design Idea: The Specialised Role 4/5

© 2010 Dr Ant Kutschera, www.maxant.co.uk

Listing 5: The specific role for Swedish tax.

Listing 6: The specific role for US tax.

DCI Design Idea: The Specialised Role 5/5
© 2010 Dr Ant Kutschera, www.maxant.co.uk

	DCI Design Idea1: The Specialised Role
	Example
	Java Implementation

