
A comparison of DCI and SOA, in Java (version 2). 1/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

A comparison of DCI and SOA, in Java.
DCI is a paradigm used in computer software to program systems of communicating
objects. Its goals are to make code more readable by promoting system behaviour to
first class status, by avoiding the fragmentation of this behaviour as typically seen in an
object oriented solution. This allows the rapidly changing system behaviour code to be
developed and maintained independently of the slower evolving domain model (data
classes). This allows programmers to reason directly about system-level state and
behaviour rather than having to create a map between their mental model, and that of
the user, which leads to more easily maintainable code1.

In DCI, the data model is used for just that, namely data structure. The behaviour is not
partitioned along data class boundaries; rather it is self containing and as such has
boundaries more natural to behaviour rather than data. In DCI, objects can dynamically
take on roles determined by the context. A role is partly the system behaviour which
relates to a particular use case or algorithm, but is also a way of viewing a particular
object within such a use case.

These things make DCI very powerful, and make DCI a paradigm in itself, comparable to
object oriented programming in its time, or service oriented programming. The author
has architected, designed, programmed and maintained Service Oriented Architecture
(SOA) solutions for nearly a decade and sees parallels between DCI and SOA. These
parallels are discussed here.

This paper presumes a prerequisite knowledge of DCI, for example, see the Artima article
http://www.artima.com/articles/dci_vision.html or the paper entitled “DCI in 1585
Words” at http://www.maxant.co.uk/whitepapers.jsp.

Services
SOA can be used to write software that fulfils most of the goals of DCI as shown in the
introduction above. However, SOA does not necessarily concentrate on those goals, and
the OASIS Reference Model2 is completely unrelated. In fact, the definition of services
has changed somewhat over the past decade. In 1997 when Sun released the EJB
specifications for stateless session beans (SLSB), the first SOA solutions were built.
Today, SOA very often relates to Web Services, distribution, metadata and
interoperability. In this paper, it is the older original style of services which are
considered.

Services define a contract which has to be fulfilled in order to use them. The first part is
a definition of the data structures which a service method takes and returns when it is
called. The second part of the contract is the service method signature, including the
documentation about what such a method does. Optionally, a service might also define
its location if it is remote, and ways to call it, but these are not necessary to create a
local service. Local services can be written using frameworks such as Spring3, or to
specifications like EJB 3.14, or indeed by creating static methods in a stateless class.

Here is a random Spring service configured using annotations. Note how it is unrelated
to a use-case, in this instance.

1 Base upon the DCI definition in Wikipedia:
http://en.wikipedia.org/wiki/Data,_Context,_and_Interaction
2 SOA RM, OASIS: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf
3 Spring: http://www.springsource.org/
4 EJB 3.1 Specifications: http://jcp.org/en/jsr/detail?id=318

A comparison of DCI and SOA, in Java (version 2). 2/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

It contains service methods (not shown) for manipulating artistic designs in a system
which lets artists upload and sell their art/designs online. Notice, it also contains
annotations related to transactions, again, nothing to do with use-case code!

To use such a service, another piece of code (in this case, also a service) can ask the
container in which it is running, to supply/inject the service:

In EJB, the annotations are different, but the idea is similar. At any time which code
needs to use a service, it asks the container for an instance of the service class.

The use of the word service, in this paper, can be defined as a class which is stateless
and has methods. The methods are called service-methods. These operate on dumb
objects which are passed as parameters to the service-methods. These objects are
called service-objects, but can also be known as transfer objects. In the interests of
completeness, it is worth mentioning that services may also provide service-methods
access to resources which are temporarily added to the service instance by the container
in which the service is running.

Parallels
In DCI a role has a role-contract. The role-contract is made up of the methods which the
role requires a data object5 to have, in order that the data object play the role. These
are typically the methods on the data object which role-methods need to call.
Additionally, there are the role-methods (system behaviour) which the role enriches the
data object with. Ignoring the role-methods in the first instance, allows one to consider
the role-contract as a particular view on an object playing the role. As an example, a
person has millions of attributes which define them. When that person plays a role, for
example a clown, the number of attributes which are relevant, and even their
organisation (structure) can change radically. While playing the role of a clown, the view
of a persons attributes is different.

Returning to SOA, before calling a service-method, the programmer must map data
objects from their world, into the data structures which form part of the service-contract.
This transformation does nothing more than create a new view on the existing data, and
as such can be thought of as equivalent to what happens in DCI when assigning the role-
contract (i.e. the role without the role-methods) to the data object. However there is a
difference, in that DCI narrows the view of existing attributes, whereby SOA allows the
signatures to be completely changed.

5 A data object is simply an object in DCI. The word data is used here to explicitly
indicate that the object contains no system behaviour, and only has simple logic to
ensure the object‘s attributes are maintained in a consistent state.

A comparison of DCI and SOA, in Java (version 2). 3/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

Back in DCI, there are also the role-methods. What happens to these in a SOA
implementation? They are simply the service-methods.

In DCI there are also Contexts. The responsibility of a context is to decide which data
objects will be assigned which roles, and to start the interaction by calling a role-method
on an object which has been cast into a role. In rare cases, a context might contain code
related to an algorithm, or use-case which does not specifically fall under the
responsibility of any of the roles contained in the context. Role-methods in DCI should
be considered as the inner workings of the context, and can even be implemented inside
the context class. If system behaviour in DCI is to be used over and over, it is the
context and roles which are put into a library.

In the service world, explicit context objects do not exist, but there is definite code which
is responsible for mapping data objects into service objects (assigning roles), and then
calling the service (starting the interaction). In the service world, there is the additional
step at the end, which is the mapping/merging of the response object or modified call
parameters back into the data model. In SOA, a context does nothing apart from
assigning roles and starting the interaction, because, if the service is to be used over and
over, it must encapsulate all the system behaviour itself. In SOA, a service method is
passed the equivalent of role-players, but they are dumb. They are similar to the role-
players of DCI just they have no methods injected. Their interface is the role-contract.
A service-method is not specifically related to individual role-players, but rather it is
related to all the role-players in the context. Hence a service method can contain code
which in DCI might have to belong in the context.

So to recap, a little dictionary:

DCI World Service World
Object Data Object
Role Method Service Method
Role Interface Service Contract
Role Contract, i.e. Role Interface without
Role Methods

Service Object, sometimes named Transfer
Object

Context Code in a Service Client

So, the service world can be used to do similar things to the DCI world, but in itself, it is
unsatisfying because service solutions do not tend to relate to DCI – the goals are very
different. There is no explicit requirement for a service solution to create use-case
centric code, or to encourage the programmer’s mental model to be the same as the
users model.

Let us now consider some lower level direct comparisons between the two paradigms.
Note these comparisons relate to implementing DCI and SOA using Java. The DCI
examples posted below are related to a Java DCI implementation as documented in the
DCI Tools for Java library, found at http://www.maxant.co.uk/tools.jsp. Other DCI
implementations exist in Java, for example Qi4J, or ObjectTeams, but are not considered
here.

Comparisons of Contexts and Roles
Consider the Frontloader example which has been discussed on the Object-Composition
forum6. In this example, a Project consists of Tasks. Each Task has itself a list of Tasks
upon which it depends. These tasks are planned using a frontloading7 algorithm, which
plans tasks to start as early as possible, so long as it is after the start of the project, and

6 Google Group Object-Composition: http://groups.google.com/group/object-composition
7 Front loading: http://www.thefreedictionary.com/front-loading

A comparison of DCI and SOA, in Java (version 2). 4/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

after the last task upon which they depend has been completed. Figure 1 shows the
relationship in the data objects.

In a DCI solution, the project can be assigned the role of a frontloader, and each task
can be assigned the role of an activity. The frontloader role provides the behaviour
which iterates or recurses over the object graph and the activity role provides the
behaviour which determines a start date for an individual task based on its dependencies.
These two roles are also shown in Figure 1. In the DCI solution for this example, there is
no algorithmic code in the context related to frontloading.

In a SOA solution, the data model is mapped to a dumb data model (transfer objects).
The service contains the algorithms and system behaviour in service methods and is
passed the transfer objects in the service-method call. These are also shown in Figure 1.

Figure 1: Class Diagram showing classes involved in both the DCI and SOA
solutions to the frontloader example.

The following listing shows the code from the DCI context.

Listing 1: DCI Context Code for the Frontloader example

And the code below shows the analogous class in the service world, i.e. a class which
calls a service.

A comparison of DCI and SOA, in Java (version 2). 5/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

Listing 2: SOA Service Calling Code for the Frontloader example

Comparing Listing 1 & Listing 2, one can see the similarities, but there are marked also
differences.

The biggest difference, is that role-methods are called on objects (e.g.
objectPlayingRole.roleMethod()), rather than the objects being passed to a method
(e.g. service.serviceMethod(service-object)). Because the service-method is in a
stateless class, it can be though of as just hanging in the air. The fact that it belongs to
a class is more to do with Java, as well as a need to somehow call it, rather than
anything else.

There is a good reason why DCI insists on the methods being injected into the objects,
and that is that a goal of DCI is to keep the code object oriented. Having methods which
just hang in the air, which are passed objects to operate on, is not object oriented.
While OO can live with individual objects having behaviour, the service paradigm
considers there to be higher powers, namely services, which do work on objects, rather
than the objects doing work on themselves and their friends. See the end of this paper
for more discussion on this topic.

One goal of DCI is to make the code read the same as a use-case. We shall assume that
the DCI listing does this. As such, the mental model being used contains a Project and
some Tasks, a Frontloader and Activities.

In the service solution, if it also reads like the use case, then the mental model contains
different objects, namely it too has a Project consisting of Tasks, but it then has a
Frontloader Service and an Activity Service. Some would argue, that this is a technical
model, rather than one shared by end users and analysts. So consider Listing 3, where
the class and variable names have been modified.

A comparison of DCI and SOA, in Java (version 2). 6/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

Listing 3: SOA Service Calling Code, but with modified class and variable names

Changing the names of classes and variables could be considered a parlour trick, but the
resulting code (Listing 3) is now almost identical to the DCI code (Listing 1). We have
achieved the goal of making the service solution use the same mental model as the DCI
solution. We have also used the same objects for system state and roles for system
behaviour as DCI, but note how the semantics are different. In DCI, the method
doFrontloadingFrom() takes a parameter, and is called on the object playing the role of
the front loader. In the service solution, the method takes two parameters, and is called
as a static method rather than a method on an object. The two solutions differ because
of the semantics, and as such, it is not recommended that a service solution be modified
to use an identical mental model as the DCI solution. The semantics in the service
solution are now wrong – no analyst would model their world like this, with the front
loader being passed the front loader data.

One could argue that a programmer would get used to reading the service solution’s
frontLoader_Role.doFrontloadingFrom(projectStart, frontLoader) as “the object
playing the role of the front loader, does frontloading based on a start date”, rather than
“the object playing the role of the front loader, does frontloading based on a start date
and itself”, but to do this, the programmer is translating what he sees to what he says,
and this translation, or mapping is an unnecessary one, which just complicates the entire
situation.

So, for a SOA solution to gain the benefits of DCI, the mental model used by
programmers, analysts, users and other stake holders needs to be different than the
mental model used in DCI.

Let us now consider the role-methods / service-methods, and compare them in both
paradigms. Here is the DCI code for the front loader role, which a project plays:

A comparison of DCI and SOA, in Java (version 2). 7/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

Listing 4: DCI Role-Method for Iterating over Tasks

The DCI code in Listing 4 has to keep assigning Task data objects the Activity role in
order to get them do to anything useful (annotations 1 & 2 in the listing). This role-
assignment is done on the fly. The role-assignment requires a reference to the “current
context”, in order to do the role assignment, because it is the responsibility of the
context to do role assignment. It could be argued that the role-assignment does not
need to be done by the current context, but could be done by a language construct or
framework (or whichever mechanism is in use), directly. If it is the current context
which does the role assignment, it is not a real problem, because the context and roles
are two parts of a “whole” in DCI; they belong together and are inseparable because a
role makes no sense without a context. As such, there is no real cyclic dependency,
especially, because the “current context” is (in this example) a reference to an interface

1

2

3

A comparison of DCI and SOA, in Java (version 2). 8/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

– an object playing the role of the current context, rather than the context object itself.
It has been decoupled.

Note also the “self” object, which is a reference to the object currently playing the role
(the interface in the role-contract).

Annotation 3 in the listing shows that the role-method is also operating on data objects
which have not been cast into roles. The objects could be assigned roles, but in the
interest of saving code, have not been. To the author’s knowledge, DCI does not dictate
that assignment is always necessary.

Now the service solution:

Listing 5: SOA Service-Method for Iterating over Tasks

In Listing 5, the service-method receives the transfer object which contains all its child
objects and their children – the entire object graph was mapped before the interaction
started. As such, at annotations 1 & 3 in the listing, no new casting is required, and so
there is no need to have a reference to the current context or a mapper.

Annotation 2 shows that a finer-grained service (the ActivityService) is being used in
order to plan the individual activity (set start date equal to latest end date of
dependencies). In SOA it is more likely that the method doing this part of the algorithm
would be part of the FrontLoaderService, rather than a lower level service, because all
code relating to the specific business-case (planning) is contained within the service.
Because DCI is about adding behaviour specific to roles to those objects who play the
role, the planning of individual tasks fits more naturally inside the role played by the
individual tasks (i.e. the Activity role). But the role is still specific to the context, and as
such, is contained in the same namespace as the main role-method and context. This is

1

2

3

A comparison of DCI and SOA, in Java (version 2). 9/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

exactly what a SOA solution would strive to do. The code shown near annotation 2 is
probably more related to creating and calling a sub-context in DCI, than it is to calling a
different role-method in DCI.

Let us now consider the DCI role-methods for planning individual tasks.

Listing 6: DCI Role-Method for Planning an individual Task

Listing 6 shows two methods for planning individual tasks in DCI. The upper method is
fine and almost identical to the method shown in the SOA solution (Listing 7, below), but
relies on a helper method (annotation 1) which must again do casting of child data-
objects into roles.

Listing 7: SOA Service-Method for Planning an individual Task

Listing 7 shows that in the SOA solution, no re-assignment of roles is necessary, because
of the upfront mapping which took place.

Finally, in the interests of full disclosure, it is important to consider what happens in the
context, when in the DCI solution, roles are assigned, or in the SOA solution, objects are
mapped.

1

A comparison of DCI and SOA, in Java (version 2). 10/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

Listing 8: DCI Role Assignment

Below is the analogous code for the service solution.

Listing 9: SOA Mapping

Comparing Listing 8 and Listing 9, shows that casting of roles in DCI is a simple affair.
The same objective in the SOA solution is comparatively unsatisfactory, although it must
be said that mapping of structures with interdependencies is particularly difficult. In
SOA, a normal mapping involves simple mappings from one graph to another, with no
need for indexes as shown in Listing 9 to track dependencies and set them up in the
target graph.

This negative point in the SOA solution can be turned into a positive point. In DCI, a
role-contract requires any data object playing the role to have a list of methods. The
role-contract specifies the exact signatures of those methods (even in dynamic languages
where no explicitly “interface” exists, there is still an implicit requirement for objects to
have the correct data methods in order to play a role). In cases where a context and
role are to be used by many data objects, all of the data objects must contain the same
methods, even if the designer of the domain model would prefer slightly different names
in individual data classes. Or consider a case where a German company want’s to use a
context & role from a library written by an English company. In order to do this, the
German company is required to have English naming in their data model, which may go
against company policy. Of course a mapper / wrapper / other mechanism can be used
to solve this problem, but in such cases, DCI no longer fairs better than the SOA solution.
The SOA solution always requires a mapping, so such problems are naturally solved.

A comparison of DCI and SOA, in Java (version 2). 11/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

Returning to Listing 6 shows how DCI requires on the fly role assignment. The SOA
solution does not require this because it is able to “assign roles” up front, to all objects in
the graph. DCI cannot do this for the following reasons. If the Frontloader_Role which
the project plays is to have a method getActivities() which returns a list of activities
(i.e. tasks already cast into their role), and not do this on the fly, it needs a place to hold
the list of activities which are assigned during such an up front assignment. But there is
no place for this list to go, because roles in DCI are stateless.

Nonetheless, a more elegant solution can be created. The BehaviourInjector from the
DCI Tools for Java library, has a method for getting an IIterable_Role. This object is a
Java java.lang.Iterable8 playing a special generic role from the library, which does the
role assignment automatically. The code in annotation 3 from Listing 6 reduces to the
following single line:

More complex cases
While probably affecting less than 1‰ of production code, attempting recursion in DCI
and SOA makes an interesting comparison, partly because it is a demonstration of more
complex code.

Listing 10: DCI Role-Method for Frontloading Recursively

Listing 10 shows how recursion has been implemented in the DCI Tools for Java library,
based on suggestions from the DCI Execution Model9. Annotation 1 shows how the
current context is suspended and its role-map is frozen. A new role-map is pushed onto
the stack. Annotation 2 shows re-assignment of the role “Activities”, which sets the
object playing the role of “Activities” (an IIterable_Role of generic type IActivity_Role) to
be the next level in the hierarchy to be recursed. Annotation 3 restarts the context with
the new objects playing the relevant roles. Once that restart finishes, the new role-map
is popped off the stack and the suspended role-map once again becomes active.

8 An Iterable is a class which allows “for loops” to iterate over lists by typing code like
this: for(IActivity_Role activity : anIterable){}, which reads as “for each
activity in anIterable”.
9 The DCI Execution Model: http://heim.ifi.uio.no/~trygver/2010/DCIExecutionModel.pdf

1

2

3

A comparison of DCI and SOA, in Java (version 2). 12/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

Listing 11: Service-Method for Frontloading Recursively

Listing 11 shows how in a SOA solution, recursion is just like normal it would be in
procedural programming.

Other Noteworthy Points

SOA Flexibility
It is feasible that a frontloading algorithm might be made available, either via a library,
or as an online web service, and that it be published as a service by a company
interested in attracting business partners.

As an example of the flexibility of SOA services, now consider a company which is
creating software for publishing menus. The user is able to select a set of courses and
the application provides the user with a list of ingredients and timings for when to start
each step in each recipe, and the recipe itself. The system then orders the ingredients
and arranges their delivery. The data model which they might create could contain
Recipes which are made up of Recipe Steps and interdependencies, very similar to the
Project/Task data model used in the examples above.

In order to do the planning of such recipes it is feasible that they, not being planning
experts, would seek the advice of a business partner and find the one mentioned above
who publishes a planning service.

SOA and its mappings are flexible enough to allow the recipes from the one company to
be planned by the planning service from the other company, even though the data
models are fairly different. Consider the following listings, and notice how while the data
models use different language, the planning service is fully integratable into the recipe
solution.

Equally, a third company, wanting to offer parties (e.g. bachelor parties) with a number
of events in each party, could use the planning service too for planning the day and the
event timings.

Listing 12: Tester Method, to start the Application

1

A comparison of DCI and SOA, in Java (version 2). 13/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

Listing 13: The Kitchen Service Implementation

A comparison of DCI and SOA, in Java (version 2). 14/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

Listing 14: The Kitchen Service and its Service Objects

Listing 15: The Planning Service and its Service Objects

Notice how the two data models are quite different and none of the methods are the
same. Note that the PlanningService uses the recursive code exactly as shown in
Listing 11.

Suspension of Polymorphism
The DCI Execution Model talks about suspending polymorphism for role-methods. In
SOA it is unusual for a service to be sub-classed. If different functionality is required, it
is normal to use configuration to make a different implementation of the service available
to the container. As such, both paradigms make static analysis of algorithms possible,
however to do so in a SOA environment might require static analysis of a configuration
(file).

Resources and Cross Cutting Concerns
Services typically live inside containers. Containers are technical entities which allow the
configuration and management of resources such as databases, email servers, or other
external systems, to be separated from the deployable code. They also allow cross-
cutting concerns such as transactions and security to be handled outside of the business
code which service-methods implement. Scalability, reliability, concurrency and things
such as resource pooling (such as threads, databases, or the service instances
themselves) are all handled by the container. DCI currently mentions nothing about such
things. However, if a Context were to be deployed as a “service” in the technical sense,
it would immediately have access to all of these advantages. Role-methods starting sub-
contexts would be similar to service-methods calling lower level services, which allows
the sub-context / sub-service-method to reconsider the cross cutting concerns (e.g. start
an inner transaction or re-check security for different roles) as well as address different
resources.

Higher Powers
Think about writing a graphical game in which players have tanks, and the tanks move or
shoot on each turn. When a tank shoots at another tank, the attributes might be
direction, power, etc. One could imagine a method on a tank object called “shoot”. It
might even be passed another tank object which is the target. But what happens next?
In real life, the shell may, or may not hit the target. Who decides whether it hits, and if
it does, how much damage is inflicted on the tank? Fate, perhaps? Or the skill of the
tank crew… However, a good way to model this in software is to let the gaming engine
decide. If MVC were used in this game, it would be the controller which would receive an
event about the user’s decision to shoot. The controller would make a call to something
in order that the shooting be calculated and the result applied to the model, so that the

A comparison of DCI and SOA, in Java (version 2). 15/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

view can be updated and the game can continue. If it were the author of this paper
writing the game, the logic for the shooting would not be implemented in the Tank class,
rather in the gaming engine, which can be considered to be a service. The gaming
engine would receive the tanks, and user’s choices, and it would use more complex
algorithms to determine the result.

Consider something completely different from a tank game, namely a word processor.
When the user wants to insert an image from a file, the user selects the file and clicks
the OK button to get the system to read the file, place it in the current paragraph and
display it on the screen. The author has quizzed a number of people about how they
model such things in their minds and has always been told that it is either the user
themselves, or “the system” or the word processor (a higher power, a service) which
does these tasks. It has never been stated that the document or a paragraph or any
other entity which is part of a typical document data model does such things.

Things such as game engines and word processors have state, but this state is the “M” in
MVC; it is the data model which SOA or DCI enrich with functionality. Such state does
not need to be modelled together with the higher-power behaviour which operates on it,
as is suggested by object orientation, i.e. in the same class. Rather the higher-power
behaviour can and should be split out into another class. Whatever the situation, in
almost all problems solved by software, one can find a higher power responsible for
things related to use-cases or algorithms.

User’s Mental Model
DCI aims to make the user’s mental model the programmer’s mental model, so that
there is no need to map between the two. In reality, there is never one user, and never
one programmer, rather there are many of both. This means that the real aim is for
everyone to work with the same mental model. In order for everyone to use that same
mental model, there will be debate and discussion, when it is perfectly acceptable to
encourage users (and analysts and other stake holders) to think of the higher powers in
software which might actually contain the behaviour which needs implementing.

Layers
In SOA solutions it is typical to create a service hierarchy, in which services are assigned
to specific layers. These layers have different responsibilities, such as an “Application
Layer”, a “Business Layer” and an “Integration or Persistence Layer”. The application
layer is responsible for containing use-case related code, which is comparable to the
steps which a user might take while operating an application. The business layer is in
charge of containing business logic, and algorithmic details of use cases, which the user
is not necessarily directly concerned about. The lower level layers are normally very fine
grained and allow the details of integrating other systems or persisting data to be hidden
away.

For DCI, it has been suggested that it is currently unclear where business rules might be
implemented10, and it is not currently defined whether DCI needs to address this. It has
also been suggested11, that DCI would have the most use in the upper application layer,
where use cases are normally modelled in SOA solutions.

Summary
DCI has powerful goals and characteristics. The service world could benefit from these
goals and characteristics by starting with a model which is closer to the common mental
model shared by all stakeholders. Too often, SOA solutions are too technical, and the

10 Artima Article: http://www.artima.com/articles/dci_vision.html
11 Google Group Object-Composition: http://groups.google.com/group/object-
composition

A comparison of DCI and SOA, in Java (version 2). 16/16
 © 2011 Dr Ant Kutschera, www.maxant.co.uk

mental model of the programmer differs from that of the user or analyst. That said,
services alone do already splits system behaviour and data.

This paper has shown that a service solution and a DCI solution are very similar,
although the semantics and mental models differ somewhat.

The source code used in this document is available from
http://www.maxant.co.uk/tools.jsp.

About the Author
Dr Ant Kutschera has been working in IT since 2000, implementing software in the
enterprise, in all aspects of the software life cycle, including but not limited to
requirements gathering, architecture, design, programming, testing, delivery, support
and maintenance. He currently works for various clients as an independent consultant,
specialising in software architecture, Java EE, Rich Clients and SOA. He can be contacted
through:

